Skip to main content
Log in

Core Formation and Mantle Differentiation on Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Geochemical investigation of Martian meteorites (SNC meteorites) yields important constraints on the chemical and geodynamical evolution of Mars. These samples may not be representative of the whole of Mars; however, they provide constraints on the early differentiation processes on Mars. The bulk composition of Martian samples implies the presence of a metallic core that formed concurrently as the planet accreted. The strong depletion of highly siderophile elements in the Martian mantle is only possible if Mars had a large scale magma ocean early in its history allowing efficient separation of a metallic melt from molten silicate. The solidification of the magma ocean created chemical heterogeneities whose ancient origin is manifested in the heterogeneous 142Nd and 182W abundances observed in different meteorite groups derived from Mars. The isotope anomalies measured in SNC meteorites imply major chemical fractionation within the Martian mantle during the life time of the short-lived isotopes 146Sm and 182Hf. The Hf-W data are consistent with very rapid accretion of Mars within a few million years or, alternatively, a more protracted accretion history involving several large impacts and incomplete metal-silicate equilibration during core formation. In contrast to Earth early-formed chemical heterogeneities are still preserved on Mars, albeit slightly modified by mixing processes. The preservation of such ancient chemical differences is only possible if Mars did not undergo efficient whole mantle convection or vigorous plate tectonic style processes after the first few tens of millions of years of its history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Y. Abe, Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 27–39 (1997)

    Article  ADS  Google Scholar 

  • M.H. Acuna, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Reme, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790–793 (1999)

    Article  ADS  Google Scholar 

  • F. Albarède, Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009)

    Article  ADS  Google Scholar 

  • J.R. Arevalo, W.F. McDonough, Tungsten geochemistry and implications for understanding the Earth’s interior. Earth Planet. Sci. Lett. 272, 656–665 (2008)

    Article  ADS  Google Scholar 

  • P. Beck, J.A. Barret, P. Gillet et al., The Diderot Meteorite, the second chassignite. Lunar Planet. Sci. XXXVI, Abstract #1326 (2005)

  • C. Bertka, Y. Fei, Mineralogy of the Martian interior up to core-mantle boundary pressures. J. Geophys. Res. 102, 5251–5264 (1997)

    Article  ADS  Google Scholar 

  • J. Blichert-Toft, J.D. Gleason, P. Telouk, F. Albarède: The Lu–Hf isotope geochemistry of shergottites and the evolution of the Martian mantle-crust system. Earth Planet. Sci. Lett. 173, 25–39 (1999)

    Article  ADS  Google Scholar 

  • D.D. Bogard, P. Johnson, Martian gases in an Antarctic meteorite. Science 221, 651–654 (1983)

    Article  ADS  Google Scholar 

  • D.D. Bogard, R. Clayton, K. Marti, T. Owen, G. Turner, Martian volatiles: isotopic composition, origin and evolution. Space Sci. Rev. 96, 105–164 (2001)

    Article  Google Scholar 

  • L.E. Borg, D.S. Draper, A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteorit. Planet. Sci. 38, 1713–1731 (2003)

    Article  ADS  Google Scholar 

  • L.E. Borg, J.E. Edmunson, Y. Asmeron, Constraints on the U-Pb isotopic systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami. Geochim. Cosmochim. Acta 69, 5819–5830 (2005)

    Article  ADS  Google Scholar 

  • L.E. Borg, L.E. Nyquist, H. Wiesmann, Y. Reese, Constraints on the petrogenesis of Martian meteorites from the Rb-Sr and Sm-Nd isotopic systematics of the lherzolitic shergottites ALHA77005 and LEW88516. Geochim. Cosmochim. Acta 66, 2037–2053 (2002)

    Article  ADS  Google Scholar 

  • L.E. Borg, L.E. Nyquist, L.A. Taylor, H. Wiesmann, C.-Y. Shih, Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochim. Cosmochim. Acta 61, 4915–4931 (1997)

    Article  ADS  Google Scholar 

  • L.E. Borg, L.E. Nyquist, H. Wiesmann, C.-Y. Shih, Y. Reese, The age of Dar al Gani 476 and the differentiation history of the Martian meteorites inferred from their radiogenic isotopic systematics. Geochim. Cosmochim. Acta 67, 3519–3536 (2003)

    Article  ADS  Google Scholar 

  • A. Borisov, H. Palme, B. Spettel, Solubility of palladium in siclica melts—implications for core formation on Earth. Geochim. Cosmochim. Acta 58, 705–716 (1994)

    Article  ADS  Google Scholar 

  • W.F. Bottke, R.J. Walker, J.M.D. Day, D. Nesvorny, L.T. Elkins-Tanton, Stochastic Late Accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010)

    Article  ADS  Google Scholar 

  • A. Bouvier, J. Blichert-Toft, F. Albarède, Martian meteorite chronology and the evolution of the interior of Mars. Earth Planet. Sci. Lett. 280, 285–295 (2009)

    Article  ADS  Google Scholar 

  • A. Bouvier, J. Blichert-Toft, J.D. Vervoort, F. Albarède, The age of SNC meteorites and the antiquity of the Martian surface. Earth Planet. Sci. Lett. 240, 221–233 (2005)

    Article  ADS  Google Scholar 

  • A. Bouvier, J. Blichert-Toft, J.D. Vervoort, P. Gillet, F. Albarède, The case for old shergottites. Earth Planet. Sci. Lett. 266, 105–124 (2008)

    Article  ADS  Google Scholar 

  • M. Boyet, R.W. Carlson, 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)

    Article  ADS  Google Scholar 

  • A.D. Brandon, R.J. Walker, J.W. Morgan, G.G. Goles, Re-Os isotopic evidence for early differentiation of the Martian mantle. Geochim. Cosmochim. Acta 64, 4083–4095 (2000)

    Article  ADS  Google Scholar 

  • A.D. Brandon, I. Puchtel, R.J. Walker, J.M.D. Day, A.J. Irving, L.A. Taylor, Evolution of the martian mantle inferred from the 187Re-187Os isotope and highly siderophile element abundance systematics of shergottite meteorites. Geochim. Cosmochim. Acta 76, 206–235 (2012)

    Article  ADS  Google Scholar 

  • R. Brasser, The formation of Mars: building blocks and accretion time scale. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9904-2

    Google Scholar 

  • D. Breuer, T. Spohn, Early plate tectonics versus single-plate tectonics on Mars: evidence from magnetic field history and crust evolution. J. Geophys. Res. 108 (2003)

  • C. Burkhardt, T. Kleine, H. Palme, B. Bourdon, J. Zipfel, J. Friedrich, D. Ebel, Hf-W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals. Geochim. Cosmochim. Acta 72, 6177–6197 (2008)

    Article  ADS  Google Scholar 

  • C. Burkhardt, T. Kleine, N. Dauphas, R. Wieler, Nucleosynthetic tungsten isotope anomalies in acid leachates of the Murchison chondrite: implications for Hf-W chronometry. Astrophys. J. Lett. 753, L6 (2012). doi:10.1088/2041-8205/753/1/L6

    Article  ADS  Google Scholar 

  • G. Caro, B. Bourdon, Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle crust system. Geochim. Cosmochim. Acta 74, 3333–3349 (2010)

    Article  ADS  Google Scholar 

  • G. Caro, B. Bourdon, A.N. Halliday, G. Quitté, Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452, 336–339 (2008)

    Article  ADS  Google Scholar 

  • J.H. Chen, G.J. Wasserburg, Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics. Geochim. Cosmochim. Acta 50, 955–968 (1986).

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuna, N.F. Ness, T. Spohn, G. Schubert, Mars crustal magnetism. Space Sci. Rev. 111, 1–32 (2004)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuna, N.F. Ness, G. Kletetschka, D.L. Mitchell, R.P. Lin, H. Reme, Tectonic implications of Mars crustal magnetism. Proc. Natl. Acad. Sci. 102, 14970–14975 (2005)

    Article  ADS  Google Scholar 

  • T.W. Dahl, D.J. Stevenson, Turbulent mixing of metal and silicate during planet accretion and interpretation of the Hf-W chronometer. Earth Planet. Sci. Lett. 295, 177–186 (2010)

    Article  ADS  Google Scholar 

  • N. Dauphas, A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–U227 (2011)

    Article  ADS  Google Scholar 

  • V. Debaille, A.D. Brandon, Q.-Z. Yin, B. Jacobsen, Coupled 142Nd-143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525–528 (2007)

    Article  ADS  Google Scholar 

  • V. Debaille, Q.-Z. Yin, A.D. Brandon, B. Jacobsen, Martian mantle mineralogy investigated by the 176Lu-176Hf and 147Sm-143Nd systematics of shergottites. Earth Planet. Sci. Lett. 269, 186–199 (2008)

    Article  ADS  Google Scholar 

  • V. Debaille, A.D. Brandon, C. O’Neill, Q.Z. Yin, B. Jacobsen, Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nat. Geosci. 2, 548–552 (2009)

    Article  ADS  Google Scholar 

  • R. Deguen, P. Olson, P. Cardin, Experiments on turbulent metal-silicate mixing in a magma ocean. Earth Planet. Sci. Lett. 310, 303–313 (2011)

    Article  ADS  Google Scholar 

  • V. Dehant, T. Van Hoolst, O. de Viron, M. Greff-Lefftz, H. Legros, P. Defraigne, Can a solid inner core of Mars be detected from observations of polar motion and nutation of Mars? J. Geophys. Res. (2003). doi:10.1029/2003JE002140. Planets 108

    Google Scholar 

  • G. Dreibus, H. Wänke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985)

    ADS  Google Scholar 

  • G. Dreibus, H. Wänke, Volatiles on Earth and Mars: a comparison. Icarus 71, 225–240 (1987)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteorit. Planet. Sci. 38, 1753–1771 (2003)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, P.C. Hess, E.M. Parmentier, Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01 (2005a)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, S.E. Zaranek, E.M. Parmentier, P.C. Hess, Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005b)

    Article  ADS  Google Scholar 

  • N.C. Foley, M. Wadhwa, L.E. Borg, P.E. Janney, R. Hines, T.L. Grove, The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005)

    Article  ADS  Google Scholar 

  • A.M. Gaffney, L.E. Borg, Y. Asmeron, C.K. Shearer, P.V. Burger, Disturbance of isotope systematics during experimental shock and thermal metamorphism of a lunar basalt with implications for Martian meteorite chronology. Meteorit. Planet. Sci. 46, 35–52 (2011)

    ADS  Google Scholar 

  • M. Grott, D. Baratoux, E. Hauber, V. Sautter, J. Mustard, O. Gasnault, S. Ruff, S.-I. Karato, V. Debaille, M. Knapmexer, F. Sohl, T. Van Hoolst, D. Breuer, M.J. Toplis, S.M. McLennan, A. Morschhauser, Long-term Evolution of the Martian Crust-Mantle System, Space Sci. Rev. (2012)

  • J. Grotzinger, D. Beaty, G. Dromart et al., Mars sedimentary geology: key concepts and outstanding questions. Astrobiology 11, 77–87 (2011)

    Article  ADS  Google Scholar 

  • A.N. Halliday, M. Rehkämper, D.C. Lee, W. Yi, Early evolution of the Earth and Moon: new constraints from Hf-W isotope geochemistry. Earth Planet. Sci. Lett. 142, 75–89 (1996)

    Article  ADS  Google Scholar 

  • A.N. Halliday, H. Wänke, J.L. Birck, R.N. Clayton, The accretion, composition and early differentiation of Mars. Space Sci. Rev. 96, 197–230 (2001)

    Article  ADS  Google Scholar 

  • A.N. Halliday, Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004)

    Article  ADS  Google Scholar 

  • C.L. Harper, S.B. Jacobsen, Evidence for 182Hf in the early Solar System and constraints on the timescale of terrestrial accretion and core formation. Geochim. Cosmochim. Acta 60, 1131–1153 (1996)

    Article  ADS  Google Scholar 

  • C.L. Harper, L.E. Nyquist, B. Bansal, H. Wiesmann, C.-Y. Shih, Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science 267, 213–217 (1995)

    Article  ADS  Google Scholar 

  • C.D.K. Herd, L.E. Borg, J.H. Jones, J.J. Papike, Oxygen fugacity and geochemical variations in the martian basalts: Implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta 66, 2025–2036 (2002)

    Article  ADS  Google Scholar 

  • A. Holzheid, P. Sylvester, H.S.C. O’Neill, D.C. Ruble, H. Palme, Evidence for a late chondritic veneer in the Earth’s mantle from high-pressure partitioning of palladium and platinum. Nature 406, 396–399 (2000)

    Article  ADS  Google Scholar 

  • S.B. Jacobsen, The Hf-W isotopic system and the origin of the Earth and Moon. Annu. Rev. Earth Planet. Sci. 33, 531–570 (2005)

    Article  ADS  Google Scholar 

  • J.H. Jones, Isotopic relationships among the shergottites, the nakhlites and Chassigny. Proc. Lunar Planet. Sci. Conf. 19, 465–474 (1989)

    ADS  Google Scholar 

  • D.H. Johnston, T.R. McGetchi, M.N. Toksöz, Thermal state and internal structure of Mars. J. Geophys. Res. 79, 3959–3971 (1974)

    Article  ADS  Google Scholar 

  • A. Kavner, T.S. Duffy, G.Y. Shen, Phase stability and density of FeS at high pressures and temperatures: implications for the interior structure of Mars. Earth Planet. Sci. Lett. 185, 25–33 (2001)

    Article  ADS  Google Scholar 

  • N. Kinoshita, M. Paul, Y. Kashiv, P. Collon, C.M. Deibel, B. DiGiovine, J.P. Greene, D.J. Henderson, C.L. Jiang, S.T. Marley, T. Nakanishi, R.C. Pardo, K.E. Rehm, D. Robertson, R. Scott, C. Schmitt, X.D. Tang, R. Vondrasek, A. Yokoyama, A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system. Science 335, 1614–1617 (2012)

    Article  ADS  Google Scholar 

  • T. Kleine, J.F. Rudge, Chronometry of meteorites and the formation of the Earth and Moon. Elements 7, 41–46 (2011)

    Article  Google Scholar 

  • T. Kleine, C. Munker, K. Mezger, H. Palme, Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002)

    Article  ADS  Google Scholar 

  • T. Kleine, K. Mezger, H. Palme, E. Scherer, C. Münker, The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion. Earth Planet. Sci. Lett. 228, 109–123 (2004a)

    Article  ADS  Google Scholar 

  • T. Kleine, K. Mezger, C. Münker, H. Palme, A. Bischoff, 182Hf-182W isotope systematics of chondrites, eucrites, and Martian meteorites: chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 68, 2935–2946 (2004b)

    Article  ADS  Google Scholar 

  • T. Kleine, M. Touboul, J.A. Van Orman, B. Bourdon, C. Maden, K. Mezger, A. Halliday, Hf-W thermochronometry: closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth Planet. Sci. Lett. 270, 106–118 (2008)

    Article  ADS  Google Scholar 

  • T. Kleine, M. Touboul, B. Bourdon et al., Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    Article  ADS  Google Scholar 

  • P. Kong, M. Ebihara, H. Palme, Siderophile elements in martian meteorites and implications for core formation in Mars. Geochim. Cosmochim. Acta 63, 1865–1875 (1999)

    Article  ADS  Google Scholar 

  • H. Lammer, J.F. Kasting, E. Chassefiäre, R.E. Johnson, Y.N. Kulikov, F. Tian, Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008)

    Article  ADS  Google Scholar 

  • T.J. Lapen, M. Righter, A.D. Brandon, V. Debaille, A.D. Beard, J.T. Shafer, A.H. Peslier, A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328, 347–351 (2010)

    Article  ADS  Google Scholar 

  • D.-C. Lee, A.N. Halliday, Core formation on Mars and differentiated asteroids. Nature 388, 854–857 (1997)

    Article  ADS  Google Scholar 

  • A. Lenardic, F. Nimmo, L. Moresi, Growth of the hemispheric dichotomy and the cessation of plate tectonics on Mars. J. Geophys. Res. (2004). doi:10.1029/2003JE002172

    Google Scholar 

  • Q.-S. Li, W.S. Kiefer, Mantle convection and magma production on present-day Mars: Effects of temperature-dependent rheology. Geophys. Res. Lett. 34, L16203 (2007). doi:10.1029/2007GL030544

    Article  ADS  Google Scholar 

  • R.J. Lillis, H.V. Frey, M. Manga, Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars. Geophys. Res. Lett. (2008). doi:10.1029/2008GL034338

    Google Scholar 

  • F.M. McCubbin, E.H. Hauri, S.M. Elardo, K.E. Van der Kaaden, J. Wang, C.K. Shearer, Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology (2012). doi:10.1130/G33242.1

    Google Scholar 

  • H.Y. McSween, G.J. Taylor, M.B. Wyatt, Elemental composition of the Martian Crust. Science 324, 736–739 (2009)

    Article  ADS  Google Scholar 

  • H.Y.J. McSween, What we have learned about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994)

    ADS  Google Scholar 

  • D.A. Minton, H.F. Levison, Why is Mars small? A new terrestrial planet formation model including planetesimal-driven migration, in Lunar Planet. Sci. Conf. XLII (2011), Abstract # 2577

    Google Scholar 

  • O. Nebel, K. Mezger, W. van Westerenen, Rubidium isotopes in primitive chondrites: Constraints on Earth’s volatile element depletion and lead isotope evolution. Earth Planet. Sci. Lett. 305, 309–316 (2011)

    Article  ADS  Google Scholar 

  • G. Neukum, R. Jaumann, H. Hoffmann, E. Hauber, J.W. Head, A.T. Basilevsky, B.A. Ivanov, S.C. Werner, S. van Gasselt, J.B. Murray, T. McCord, Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature 432, 971–979 (2004)

    Article  ADS  Google Scholar 

  • G. Neukum, A.T. Basilevsky, T. Kneissl et al., The geologic evolution of Mars: episodicity of resurfacing events and ages from cratering analysis of image data and correlation with radiometric ages of Martian meteorites. Earth Planet. Sci. Lett. 294, 204–222 (2010)

    Article  ADS  Google Scholar 

  • H.E. Newsom, K.W.W. Sims, P. Noll, W. Jaeger, S. Maehr, T. Beserra, The depletion of W in the bulk silicate Earth: constraints on core formation. Geochim. Cosmochim. Acta 60, 1155–1169 (1996)

    Article  ADS  Google Scholar 

  • F. Nimmo, T. Kleine, How rapidly did Mars accrete? Uncertainties in the Hf-W timing of core formation. Icarus 191, 497–504 (2007)

    Article  ADS  Google Scholar 

  • F. Nimmo, D.P. O’Brien, T. Kleine, Tungsten isotopic evolution during late-stage accretion: constraints on Earth-Moon equilibration. Earth Planet. Sci. Lett. 292, 363–370 (2010)

    Article  ADS  Google Scholar 

  • L.E. Nyquist, B.M. Bansal, H. Wiesmann, C.-Y. Shih, “Martians” Young and old: Zagami and ALH84001’, in Proc. 26th Lunar Planet. Sci. Conf. (1995), pp. 1065–1066 (abstract)

    Google Scholar 

  • L.E. Nyquist, D.D. Bogard, C.-Y. Shih, A. Greshake, D. Stoffler, O. Eugster, Ages and geologic histories of Martian meteorites. Space Sci. Rev. 96, 105–164 (2001). Chronology and Evolution of Mars

    Article  ADS  Google Scholar 

  • C. O’Neill, A.M. Jellinek, A. Lenardic, Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth Planet. Sci. Lett. 261, 20–32 (2007)

    Article  ADS  Google Scholar 

  • E. Ohtani, N. Kamaya, The geochemical model of Mars: An estimation from the high pressure experiments. Geophys. Res. Lett. (1992). doi:10.1029/1092GL02369

    MATH  Google Scholar 

  • U. Ott, Noble-gases in SNC meteorites—Shergotty, Nakhla, Chassigny. Geochim. Cosmochim. Acta 52, 1937–1948 (1988)

    Article  ADS  Google Scholar 

  • U. Ott, F. Begemann, Are all the Martian meteorites from Mars? Nature 317, 509–512 (1985)

    Article  ADS  Google Scholar 

  • H. Palme, W. Rammensee, The significance of W in planetary differentiation processes: evidence from new data on eucrites, in Proc. 12th Lunar Planet. Sci. Conf. (1981), pp. 949–964

    Google Scholar 

  • C.C. Reese, V.S. Solomatov, Fluid dynamics of local martian magma oceans. Icarus 184, 102–120 (2006)

    Article  ADS  Google Scholar 

  • K. Righter, C.K. Shearer, Magmatic fractionation of Hf and W: Constraints on the timing of core formation and differenciation in the Moon and Mars. Geochim. Cosmochim. Acta 67, 2497–2507 (2003)

    Article  Google Scholar 

  • K. Righter, N.L. Chabot, Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteorit. Planet. Sci. 46, 157–176 (2011)

    Article  ADS  Google Scholar 

  • K. Righter, R.L. Hervig, D.A. Kring, Accretion and core formation on Mars: Molybdenum contents of melt inclusion glasses in three SNC meteorites. Geochim. Cosmochim. Acta 62, 2167–2177 (1998)

    Article  ADS  Google Scholar 

  • A.E. Ringwood, Composition of the core and implications for origin of the Earth. Geochem. J. 11, 111–135 (1977)

    Article  Google Scholar 

  • A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011)

    Article  ADS  Google Scholar 

  • D.D. Rubie, D.J. Frost, U. Mann et al., Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011)

    Article  ADS  Google Scholar 

  • J.F. Rudge, T. Kleine, B. Bourdon, Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat. Geosci. 3, 439–443 (2010)

    Article  ADS  Google Scholar 

  • R. Schoenberg, B.S. Kamber, K.D. Collerson, O. Eugster, New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta 66, 3151–3160 (2002)

    Article  ADS  Google Scholar 

  • G. Schubert, T. Spohn, Thermal history of Mars and the sulphur content of its core. J. Geophys. Res. Planets 95, 14095–14104 (1990)

    Article  ADS  Google Scholar 

  • H. Senshu, K. Kuramoto, T. Matsui, Thermal evolution of a growing Mars. J. Geophys. Res. 107, 5118 (2002)

    Article  Google Scholar 

  • C.-Y. Shih, L.E. Nyquist, D.D. Bogard, G.A. McKay, J.L. Wooden, B.M. Bansal, H. Wiesmann, Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and ALHA 77005: late magmatism on a geologically active planet. Geochim. Cosmochim. Acta 46, 2323–2344 (1982)

    Article  ADS  Google Scholar 

  • G.A. Snyder, L.A. Taylor, C.R. Neal, A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992)

    Article  ADS  Google Scholar 

  • F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res. 102, 1613–1635 (1997)

    Article  ADS  Google Scholar 

  • V.S. Solomatov, Fluid dynamics of a terrestrial magma ocean, in Origin of the Earth and Moon, ed. by R. Canup, K. Righter (University of Arizona Press, Tucson, 2000), pp. 323–338

    Google Scholar 

  • A.J. Stewart, M.W. Schmidt, W. van Westrenen, C. Liebske, Mars: A new core-crystallization regime. Science 316, 1323–1325 (2007)

    Article  ADS  Google Scholar 

  • H. Terasaki, D.J. Frost, D.C. Rubie, F. Langenhorst, Interconnectivity of Fe-O-S liquid in polycrystalline silicate perovskite at lower mantle conditions. Phys. Earth Planet. Inter. 161, 170–176 (2007)

    Article  ADS  Google Scholar 

  • W.B. Tonks, H.J. Melosh, Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993). Planets

    Article  ADS  Google Scholar 

  • A.H. Treiman, The nakhlite meteorites: Augite-rich igneous rocks from Mars. Chem. Erde 65, 203–296 (2005)

    Article  Google Scholar 

  • A.H. Treiman, J.D. Gleason, D.D. Bogard, The SNC meteorites are from Mars. Planet. Space Sci. 48, 1213–1230 (2000)

    Article  ADS  Google Scholar 

  • A.H. Treiman, M.J. Drake, M.-J. Janssens, R. Wolf, M. Ebihara, Core formation in the Earth and Shergottite parent body (SPB): chemical evidence from basalts. Geochim. Cosmochim. Acta 50, 1071–1091 (1986)

    Article  ADS  Google Scholar 

  • H. Wänke, J. Bruckner, G. Dreibus, R. Rieder, I. Ryabchikov, Chemical composition of rocks and soils at the Pathfinder site. Space Sci. Rev. 96, 317–330 (2001)

    Article  ADS  Google Scholar 

  • M. Wadhwa, G. Crozaz, Trace and minor elements in minerals of nakhlites and Chassigny: Clues to their petrogenesis. Geochim. Cosmochim. Acta 59, 3629–3645 (1995)

    Article  ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011)

    Article  ADS  Google Scholar 

  • Q.-Z. Yin, S.B. Jacobsen, K. Yamashita, J. Blichert-Toft, P. Telouk, F. Albarède, A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418, 949–951 (2002)

    Article  ADS  Google Scholar 

  • T. Yoshino, M.J. Walter, T. Katsura, Connectivity of molten Fe alloy in peridotite based on in situ electrical conductivity measurements: implications for core formation in terrestrial planets. Earth Planet. Sci. Lett. 222, 625–643 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was in part supported by the DFG (Leibniz Award) and the Helmholtz Society (Helmholtz Alliance ‘Planetary Evolution and Life’) to KM, by the FRS-FNRS to VD and a Förderungsprofessur des Schweizerischen Nationalfonds to TK. We are grateful to Francis Nimmo for advice regarding the accretion history of Mars. We thank L.T. Elkins-Tanton and Tilman Spohn for the constructive reviews that helped improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Mezger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezger, K., Debaille, V. & Kleine, T. Core Formation and Mantle Differentiation on Mars. Space Sci Rev 174, 27–48 (2013). https://doi.org/10.1007/s11214-012-9935-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9935-8

Keywords

Navigation