Skip to main content
Log in

Recent Results from Titan’s Ionosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Titan has the most significant atmosphere of any moon in the solar system, with a pressure at the surface larger than the Earth’s. It also has a significant ionosphere, which is usually immersed in Saturn’s magnetosphere. Occasionally it exits into Saturn’s magnetosheath. In this paper we review several recent advances in our understanding of Titan’s ionosphere, and present some comparisons with the other unmagnetized objects Mars and Venus. We present aspects of the ionospheric structure, chemistry, electrodynamic coupling and transport processes. We also review observations of ionospheric photoelectrons at Titan, Mars and Venus. Where appropriate, we mention the effects on ionospheric escape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K. Ågren, J.-E. Wahlund, R. Modolo, D. Lummerzheim, M. Galand, I. Müller-Wodarg, P. Canu, W.S. Kurth, T.E. Cravens, R.V. Yelle, J.H. Waite Jr., A.J. Coates, G.R. Lewis, D.T. Young, C. Bertucci, M.K. Douherty, On magnetospheric impact ionization and dynamics in Titan’s ram-side and polar ionosphere – a Cassini case study. Ann. Geophys. 25, 2359 (2007)

    ADS  Google Scholar 

  • K. Ågren, J.-E. Wahlund, P. Garnier, R. Modolo, J. Cui, M. Galand, I. Müller-Wodarg, The ionospheric structure of Titan. Planet. Space Sci. 57, 1821 (2009)

    ADS  Google Scholar 

  • K. Ågren, D.J. Andrews, S.C. Buchert, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, N.J.T. Edberg, P. Garnier, G.R. Lewis, R. Modolo, H. Opgenoorth, G. Provan, L. Rosenqvist, D.L. Talboys, J.-E. Wahlund, A. Wellbrock, Detection of currents and associated electric fields in Titan’s ionosphere from Cassini data, J. Geophys. Res. 116 (2011). CiteID A04313

  • D.J. Andrews, S.W.H. Cowley, M.K. Dougherty, G. Provan, Magnetic field oscillations near the planetary period in Saturn’s magnetosphere: Variation of amplitude and phase with radial distance and local time. J. Geophys. Res. 115(A14), A04212 (2010)

    Google Scholar 

  • H. Backes et al., Titan’s magnetic field signature during the first Cassini encounter. Science 308, 992 (2005)

    ADS  Google Scholar 

  • P.M. Banks, G. Kockarts, Aeronomy, Parts A and B (Academic Press, San Diego, 1973)

    Google Scholar 

  • A.R. Barakat, R.W. Schunk, A three-dimensional model of the generalized polar wind. J. Geophys. Res. 111, A12314 (2006)

    ADS  Google Scholar 

  • C. Bertucci et al., Structure of Titan’s mid-range magnetic tail: Cassini magnetometer observations during the T9 flyby. Geophys. Res. Lett. 34, L24S02 (2007)

    Google Scholar 

  • C. Bertucci et al., The magnetic memory of Titan’s ionized atmosphere. Science 321 (2008)

  • C. Bertucci et al., The variability of Titan’s magnetic environment. Planet. Space Sci. 57, 1813 (2009)

    ADS  Google Scholar 

  • M.K. Bird, R. Dutta-Roy, S.W. Asmar, T.A. Rebold, Detection of Titan’s ionosphere from Voyager 1 radio occultation observations. Icarus 130, 426–436 (1997)

    ADS  Google Scholar 

  • M. Blanc, S. Bolton, J. Bradley, M. Burton, T.E. Cravens, I. Dandouras, M.K. Dougherty, M. Festou, J. Feynman, R.E. Johnson, T. Gombosi, W.S. Kurth, P.C. Liewer, B.H. Mauk, S. Maurice, D. Mitchell, F.M. Neubauer, J.D. Richardson, D.E. Shemansky, E.C. Sittler, B.T. Tsurutani, Ph. Zarka, L.W. Esposito, E. Grün, D.A. Gurnett, A. Kliore, S.M. Krimigis, D. Southwood, J.H. Waite, D.T. Young, Magnetospheric and plasma science with Cassini-Huygens. Space Sci. Rev. 104, 253–346 (2002)

    ADS  Google Scholar 

  • R. Boström, A model of the auroral electrojets. J. Geophys. Res. 69, 4983 (1964)

    MATH  ADS  Google Scholar 

  • J.F. Brannon, J.L. Fox, H.S. Porter, Evidence for day-to-night ion transport at low solar activity in the Venus pre-dawn ionosphere. Geophys. Res. Lett. 20, 2739–2742 (1993)

    ADS  Google Scholar 

  • C.R. Chappell, T.E. Moore, J.H. Waite, The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere. J. Geophys. Res. 92, 5896 (1987)

    ADS  Google Scholar 

  • C.C. Chaston, A.J. Hull, J.W. Bonnell, C.W. Carlson, R.E. Ergun, R.J. Strangeway, J.P. McFadden, Large parallel electric fields, currents, and density cavities in dispersive Alfven waves above the aurora. J. Geophys. Res. 112, A05215 (2007)

    Google Scholar 

  • A.J. Coates, A.D. Johnstone, J.F.E. Johnson, J.J. Sojka, G.L. Wrenn, Ionospheric photoelectrons observed in the magnetosphere at distances of up to 7 Earth radii. Planet. Space Sci. 33, 1267–1275 (1985)

    ADS  Google Scholar 

  • A.J. Coates, F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite Jr., E.C. Sittler Jr., Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett. 34, L22103 (2007a)

    ADS  Google Scholar 

  • A.J. Coates, F.J. Crary, D.T. Young, K. Szego, C.S. Arridge, Z. Bebesi, E.C. Sittler Jr., R.E. Hartle, T.W. Hill, Ionospheric electrons in Titan’s tail: plasma structure during the Cassini T9 encounter. Geophys. Res. Lett. 34, L24S05 (2007b)

    Google Scholar 

  • A.J. Coates et al., Ionospheric photoelectrons at Venus: initial observations by ASPERA-4 ELS. Planet. Space Sci. 56, 802–806 (2008)

    ADS  MathSciNet  Google Scholar 

  • A.J. Coates, Interaction of Titan’s ionosphere with Saturn’s magnetosphere. Philos. Trans. R. Soc. A 367, 773–788 (2009)

    ADS  Google Scholar 

  • A.J. Coates, A. Wellbrock, G.R. Lewis, G.H. Jones, D.T. Young, F.J. Crary, J.H. Waite Jr., Heavy negative ions in Titan’s ionosphere: altitude and latitude dependence. Planet. Space Sci. 57, 1866–1871 (2009)

    ADS  Google Scholar 

  • A.J. Coates, A. Wellbrock, G.R. Lewis, G.H. Jones, D.T. Young, F.J. Crary, J.H. Waite, R.E. Johnson, T.W. Hill, E.C. Sittler Jr., Negative ions at Titan and Enceladus: recent results. Faraday Discuss. 147(1), 293–305 (2010)

    ADS  Google Scholar 

  • A.J. Coates, S.M.E. Tsang, A. Wellbrock, R.A. Frahm, J.D. Winningham, S. Barabash, R. Lundin, D.T. Young, F.J. Crary, Ionospheric photoelectrons: comparing Venus, Earth, Mars and Titan. Planet. Space Sci. 59, 1019–1027 (2011)

    ADS  Google Scholar 

  • F.J. Crary, B.A. Magee, K. Mandt, J.H. Waite Jr., J. Westlake, Heavy ions, temperatures and winds in Titan’s ionosphere: combined Cassini CAPS and INMS observations. Planet. Space Sci. 57, 1847–1856 (2009)

    ADS  Google Scholar 

  • T.E. Cravens, T.I. Gombosi, J. Kozyra, A.F. Nagy, L.H. Brace, W.C. Knudsen, Model calculations of the dayside ionosphere of Venus: Energetics. J. Geophys. Res. 85, 7778–7786 (1980)

    ADS  Google Scholar 

  • T.E. Cravens, S.L. Crawford, A.F. Nagy, T.I. Gombosi, A two-dimensional model of the ionosphere of Venus. J. Geophys. Res. 88, 5595–5606 (1983)

    ADS  Google Scholar 

  • T.E. Cravens, I.P. Robertson, J. Clark, J.-E. Wahlund, J.H. Waite Jr., S.A. Ledvina, H.B. Niemann, R.V. Yelle, W.T. Kasprzak, J.G. Luhmann, R.L. McNutt, W.-H. Ip, V. De La Haye, I.C.F. Müller-Wodarg, D.T. Young, A.J. Coates, Titan’s ionosphere: Model comparisons with Cassini Ta data. Geophys. Res. Lett. 32, L12108 (2005)

    ADS  Google Scholar 

  • T.E. Cravens, I.P. Robertson, J.H. Waite Jr., R.V. Yelle, W.T. Kasprzak, C.N. Keller, S.A. Ledvina, H.B. Niemann, J.G. Luhmann, R.L. McNutt, W.-H. Ip, V. De La Haye, I. Mueller-Wodarg, J.-E. Wahlund, V.G. Anicich, V. Vuitton, Composition of Titan’s ionosphere. Geophys. Res. Lett. 33, L07105 (2006)

    Google Scholar 

  • T.E. Cravens, I.P. Robertson, J.H. Waite Jr., R.V. Yelle, V. Vuitton, A.J. Coates, J.-E. Wahlund, K. Ågren, M.S. Richard, V. De La Haye, A. Wellbrock, F.M. Neubauer, Model-data comparisons for Titans nightside ionosphere. Icarus 199, 174–188 (2008a)

    ADS  Google Scholar 

  • T.E. Cravens et al., Energetic ion precipitation at Titan. Geophys. Res. Lett. 35, L03103 (2008b)

    Google Scholar 

  • T.E. Cravens, R.V. Yelle, J.-E. Wahlund, D.E. Shemansky, A.F. Nagy, Composition and structure of the ionosphere and thermosphere, in Titan form Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J.H. Waite (Springer, Berlin, 2009). Chapter 11

    Google Scholar 

  • J. Cui, M. Galand, R.V. Yelle, V. Vuitton, J.-E. Wahlund, P.P. Lavvas, I.C.F. Müller-Wodarg, T.E. Cravens, W.T. Kasprzak, J.H. Waite Jr., Diurnal variations of Titan’s ionosphere. J. Geophys. Res. 114, A06310 (2009)

    Google Scholar 

  • J. Cui, M. Galand, R.V. Yelle, J.-E. Wahlund, K. Ågren, J.H. Waite Jr., M.K. Dougherty, Ion transport in Titan’s upper atmosphere. J. Geophys. Res. 115, A06314 (2010)

    Google Scholar 

  • H. Derblom, Non-sporadic properties of sporadic E. Internal Report UIO-SR-81-03, Uppsala Ionosphere Obs., Uppsala, Sweden (1981)

  • N.J.T. Edberg et al., Electron density and temperature measurements in the cold plasma environment of Titan: implications for atmospheric escape. Geophys. Res. Lett. 37, L20105 (2010)

    ADS  Google Scholar 

  • N.J.T. Edberg, K. Agren, J.-E. Wahlund, M.W. Morooka, D.J. Andrews, S.W.H. Cowley, A. Wellbrock, A.J. Coates, C. Bertucci, M.K. Dougherty, Structured ionospheric outflow during the Cassini Titan flybys T55-T59. Planet. Space Sci. 59, 788–797 (2011)

    ADS  Google Scholar 

  • R.C. Elphic, H.G. Mayr, R.F. Theis, L.H. Brace, K.L. Miller, W.C. Knudsen, Nightward ion flow in the Venus ionosphere—implications of momentum balance. Geophys. Res. Lett. 11, 1007–1010 (1984)

    ADS  Google Scholar 

  • E. Engwall, A.I. Eriksson, C.M. Cully, M. André, R. Torbert, H. Vaith, Earth’s ionospheric outflow dominated by hidden cold plasma. Nat. Geosci. 2(1), 24 (2009)

    ADS  Google Scholar 

  • J.L. Fox, R.V. Yelle, Hydrocarbon ions in the ionosphere of Titan. Geophys. Res. Lett. 24, 2179–2182 (1997)

    ADS  Google Scholar 

  • J.L. Fox, A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res. 84, 7315–7333 (1979)

    ADS  Google Scholar 

  • R.A. Frahm, J.D. Winningham, J.R. Sharber, J.R. Scherrer, S.J. Jeffers, A.J. Coates, D.R. Linder, D.O. Kataria, R. Lundin, S. Barabash, M. Holmström, H. Andersson, M. Yamauchi, A. Grigoriev, E. Kallio, H. Koskinen, T. Säles, P. Riihela, W. Schmidt, J.U. Kozyra, J.G. Luhmann, E.C. Roelof, D.J. Williams, S. Livi, C.C. Curtis, K.C. Hsieh, B.R. Sandel, M. Grande, M. Carter, J.-A. Sauvaud, A. Fedorov, J.-J. Thocaven, S. McKenna-Lawler, S. Orsini, R. Cerulli-Irelli, M. Maggi, P. Wurz, P. Bochsler, N. Krupp, J. Woch, M. Fraenz, K. Asamura, C. Dierker, Carbon dioxide photoelectron peaks at Mars. Icarus 182, 371–382 (2006a)

    ADS  Google Scholar 

  • R.A. Frahm, J.R. Sharber, J.D. Winningham, P. Wurz, M.W. Liemohn, E. Kallio, M. Yamauchi, R. Lundin, S. Barabash, A.J. Coates, D.R. Linder, J.U. Kozyra, M. Holmström, S.J. Jeffers, H. Andersson, S. McKenna-Lawlor, Locations of atmospheric photoelectron energy peaks within the Mars environment. Space Sci. Rev. 126, 389–402 (2006b)

    ADS  Google Scholar 

  • M. Galand, R.V. Yelle, A.J. Coates, H. Backes, J.-E. Wahlund, Electron temperature of Titan’s sunlit ionosphere. Geophys. Res. Lett. 33, L21101 (2006)

    ADS  Google Scholar 

  • M. Galand et al., Ionization sources in Titan’s deep ionosphere. J. Geophys. Res. 115, A07312 (2010)

    Google Scholar 

  • L. Gan, C.N. Keller, T.E. Cravens, Electrons in the ionosphere of Titan. J. Geophys. Res. 97, 12,137–12,151 (1992)

    ADS  Google Scholar 

  • L. Gan, T.E. Cravens, M. Horanyi, Electrons in the ionopause boundary layer of Venus. J. Geophys. Res. 95(A11), 19,023–19,035 (1990)

    ADS  Google Scholar 

  • S.B. Ganguli, The polar wind. Rev. Geophys. 34, 311–348 (1996)

    ADS  Google Scholar 

  • D.A. Gurnett, F.L. Scarf, W.S. Kurth, The structure of Titan’s wake from plasma wave observations. J. Geophys. Res. 87, 1395–1403 (1982)

    ADS  Google Scholar 

  • P. Garnier et al., Titan’s ionosphere in the magnetosheath: Cassini RPWS results during the T32 flyby. Ann. Geophys. 27, 5257 (2009)

    MathSciNet  Google Scholar 

  • S.A. Haider, Some molecular nitrogen emission from Titan–solar EUV interaction. J. Geophys. Res. 91, 8998–9000 (1986)

    ADS  Google Scholar 

  • R.E. Hartle, J.M. Grebowsky, Planetary loss from light ion escape on Venus. Adv. Space Res. 15(4), 117–122 (1995)

    ADS  Google Scholar 

  • J.L. Horwitz, W. Zeng, Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities, flow velocities, and temperatures versus soft electron precipitation, wave-driven transverse heating, and solar zenith angle effects. J. Geophys. Res. 114, A01308 (2009)

    Google Scholar 

  • R.E. Johnson et al., Mass loss processes in Titan’s upper atmosphere, in Titan form Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J.H. Waite (Springer, Berlin, 2009). Chapter 15

    Google Scholar 

  • J.F. Kasting, D. Catling, Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429 (2003)

    ADS  Google Scholar 

  • C.N. Keller, T.E. Cravens, One-dimensional multispecies hydrodynamic models of the wakeside ionosphere of Titan. J. Geophys. Res. 99, 6527–6536 (1984)

    ADS  Google Scholar 

  • C.N. Keller, V.G. Anicich, T.E. Cravens, Model of Titan’s ionosphere with detailed hydrocarbon ion chemistry. Planet. Space Sci. 46, 1157–1174 (1998)

    ADS  Google Scholar 

  • M.C. Kelley, The Earth’s Ionosphere (Academic Press, San Diego, 2009)

    Google Scholar 

  • A.J. Kliore, A.F. Nagy, E.A. Marouf, R.G. French, F.M. Flasar, N.J. Rappaport, A. Anabttawi, S.W. Asmar, D.S. Kahann, E. Barbinis, G.L. Goltz, D.U. Fleischman, D.J. Rochblatt, First results from the Cassini radio occultations of the Titan ionosphere. J. Geophys. Res. 113, A09317 (2008)

    Google Scholar 

  • Yu.N. Kulikov et al., Atmospheric and water loss from early Venus. Planet. Space Sci. 54, 1425 (2006)

    ADS  Google Scholar 

  • H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, E.F. Guinan, R. Abart, S.J. Bauer, Loss of water from Mars: implications for the oxidation of the soil. Icarus 165, 9 (2003)

    ADS  Google Scholar 

  • H. Lammer et al., Coronal mass ejection (CME) activity of low mass M start’s as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pickup of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 185 (2007)

    ADS  Google Scholar 

  • J.S. Lee, J.P. Doering, T.A. Potemra, L.H. Brace, Measurement of the ambient photoelectron spectrum from AE. I: AE-E measurements below 300 km in solar minimum conditions. Planet. Space Sci. 28, 947 (1980a)

    ADS  Google Scholar 

  • J.S. Lee, J.P. Doering, T.A. Potemra, L.H. Brace, Measurements of the ambient photoelectron spectrum from AE.II: AE-E measurements between 300 and 1000 km in solar minimum conditions. Planet. Space Sci. 28, 973 (1980b)

    ADS  Google Scholar 

  • M.-C. Liang, Y.L. Yung, D.E. Shemansky, Photolytically generated aerosols in the mesosphere and thermosphere of Titan. Astrophys. J. Lett. 661, L199–L202 (2007)

    ADS  Google Scholar 

  • D.R. Linder, A.J. Coates, R.D. Woodliffe, C. Alsop, A.D. Johnstone, M. Grande, A. Preece, B. Narheim, K. Svenes, D.T. Young, The Cassini CAPS electron spectrometer, in Measurement Techniques in Space Plasmas: Particles, ed. by R.E. Pfaff, J.E. Borovsky, D.T. Young. AGU Geophysical Monograph, vol. 102 (AGU, Washington DC, 1998), pp. 257–262

    Google Scholar 

  • J.J. López-Moreno, G.J. Molina-Cuberos, M. Hamelin, R. Grard, F. Simões, R. Godard, K. Schwingenschuh, C. Béghin, J.J. Berthelier, V.J.G. Brown, P. Faulkner, F. Ferri, M. Fulchignoni, I. Jernej, J.M. Jerónimo, R. Rodrigo, R. Trautner, Structure of Titan’s low altitude ionized layer from relaxation probe onboard Huygens. Geophys. Res. Lett. 35, L22104 (2008)

    ADS  Google Scholar 

  • P. Louarn, J.E. Wahlund, T. Chust, H. de Feraudy, A. Roux, B. Holback, P.O. Dovner, A.I. Eriksson, G. Holmgren, Observation of kinetic Alfven waves by the FREJA spacecraft. Geophys. Res. Lett. 21, 1847–1850 (1994)

    ADS  Google Scholar 

  • R. Lundin, S. Barabash, Evolution of the martian atmosphere and hydrosphere: solar wind erosion studied by ASPERA-3 on Mars Express. Planet. Space Sci. 52, 1059 (2004)

    ADS  Google Scholar 

  • R. Lundin et al., Solar wind-induced atmospheric erosion at Mars: First results from ASPERA-3 on Mars Express. Science 305, 1933 (2004)

    ADS  Google Scholar 

  • Y.-J. Ma, A.F. Nagy, T.E. Cravens, I.V. Sokolov, K.C. Hansen, J.-E. Wahlund, F.J. Crary, A.J. Coates, M.K. Dougherty, Comparisons between MHD model calculations and observations of Cassini flybys of Titan. J. Geophys. Res. 111, A05207 (2006)

    Google Scholar 

  • Y.J. Ma, A.F. Nagy, Ion escape fluxes from Mars, Geophys. Res. Lett., L08201 (2007)

  • G.P. Mantas, W.B. Hanson, Photoelectron fluxes in the Martian ionosphere. J. Geophys. Res. 84, 369–385 (1979)

    ADS  Google Scholar 

  • M. Michael, S.N. Tripathi, P. Arya, A. Coates, A. Wellbrock, D.T. Young, High-altitude charged particles in the atmosphere of Titan. Planet. Space Sci. 59, 880–885 (2011)

    ADS  Google Scholar 

  • R. Modolo et al., Far plasma wake of Titan from RPWS observations: a case study. Geophys. Res. Lett. 34, L24S04 (2007a)

    Google Scholar 

  • R. Modolo et al., Plasma environment in the wake of Titan from hybrid simulation: a case study. Geophys. Res. Lett. 34, L24S07 (2007b)

    Google Scholar 

  • R. Modolo, G.M. Chanteur, A global hybrid model for Titan’s interaction with the Kronian plasma: Application to the Cassini Ta flyby. J. Geophys. Res. 113, A01317 (2008)

    Google Scholar 

  • G.J. Molina-Cuberos, H. Lammer, W. Stumptner, K. Schwingenschuh, H.O. Rucker, J.J. Lopez-Moreno, R. Rodrigo, T. Tokano, Ionospheric layer induced by meteoric ionization in Titan’s atmosphere. Planet. Space Sci. 49, 143–153 (2001)

    ADS  Google Scholar 

  • T.E. Moore, J.L. Horwitz, Stellar ablation of planetary atmospheres. Rev. Geophys. 45, RG3002 (2007)

    ADS  Google Scholar 

  • M.W. Morooka et al., The electron density of Saturn’s magnetosphere. Ann. Geophys. 27, 2971 (2009)

    ADS  Google Scholar 

  • I.C.F. Müller-Wodarg, R.V. Yelle, M. Mendillo, L.A. Young, A.D. Aylward, The thermosphere of Titan simulated by a global three-dimensional time-dependent model. J. Geophys. Res. 105, 20833–20856 (2000)

    Google Scholar 

  • I.C.F. Müller-Wodarg, R.V. Yelle, J. Cui, J.H. Waite Jr., Horizontal structures and dynamics of Titan’s thermosphere. J. Geophys. Res. 113, E10005 (2008)

    Google Scholar 

  • A.F. Nagy, P.M. Banks, Photoelectron fluxes in the ionosphere. J. Geophys. Res. 75, 6260–6270 (1970)

    ADS  Google Scholar 

  • A.F. Nagy, A. Korosmezev, J. Kim, T.I. Gombosi, A two dimensional shock capturing, hydrodynamic model of the Venus ionosphere. Geophys. Res. Lett. 18, 801–804 (1991)

    ADS  Google Scholar 

  • A.F. Nagy, Y. Liu, K.C. Hansen, K. Kabin, T.I. Gombosi, M.R. Combi, D.L. DeZeeuw, K.G. Powell, A.J. Kliore, The interaction between the magnetosphere of Saturn and Titan’s ionosphere. J. Geophys. Res. 106, 6151–6160 (2001)

    ADS  Google Scholar 

  • N.F. Ness et al., The induced magnetosphere of Titan. J. Geophys. Res. 87, 1369 (1982)

    ADS  Google Scholar 

  • F.M. Neubauer, D.A. Gurnett, J.D. Scudder, R.E. Hartle, Titan’s magnetospheric interaction, in Saturn, ed. by T. Gehrels, M.S. Matthews (Univ. Arizona Press, Tucson, 1984), pp. 760–787

    Google Scholar 

  • F.M. Neubauer, H. Backes, M.K. Dougherty, A. Wennmacher, C.T. Russell, A. Coates, D. Young, N. Achilleos, N. André, C.S. Arridge, C. Bertucci, G.H. Jones, K.K. Khurana, T. Knetter, A. Law, G.R. Lewis, J. Saur, Titan’s near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys TA, TB, and T3. J. Geophys. Res. 111, A10220 (2006)

    ADS  Google Scholar 

  • T. Nygrén, L. Jalonen, J. Oksman, T. Turunen, The role of electric field and neutral wind direction in the formation of sporadic E-layers. J. Atmos. Sol.-Terr. Phys. 46, 373 (1984)

    ADS  Google Scholar 

  • M. Pätzold, S. Tellmann, B. Häusler, D. Hinson, R. Schaa, G.L. Tyler, A sporadic third layer in the ionosphere of Mars. Science 310, 837–839 (2005)

    ADS  Google Scholar 

  • M. Pätzold, S. Tellmann, B. Häusler, M.K. Bird, G.L. Tyler, A.A. Christou, P. Withers, A sporadic layer in the Venus lower ionosphere of meteoric origin. Geophys. Res. Lett. 36, L05203 (2009)

    Google Scholar 

  • M.H. Rees, Physics and Chemistry of the Upper Atmosphere (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  • I. Ribas, E.F. Guinan, M. Gudel, M. Audard, Evolution of the solar activity over time and effects on planetary atmospheres I: High-energy irradiances (1–1700 Å). Astrophys. J. 622, 680 (2005)

    ADS  Google Scholar 

  • L. Rosenqvist et al., Titan ionospheric conductivities from Cassini measurements. Planet. Space Sci. 10, 1016 (2009)

    Google Scholar 

  • A.M. Rymer, H.T. Smith, A. Wellbrock, A.J. Coates, D.T. Young, Discrete classification and electron energy spectra of Titan’s varied magnetospheric environment. Geophys. Res. Lett. 36, 799 (2009)

    Google Scholar 

  • C. Sagan, B.N. Khare, W.R. Thompson, G.D. McDonald, M.R. Wing, J.L. Bada, T. Vo-Dinh, E.T. Arakawa, Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter. Astrophys. J. 414(1), 399–405 (1993)

    ADS  Google Scholar 

  • R.W. Schunk, A.F. Nagy, Ionospheres—Physics, Plasma Physics, and Chemistry (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  • I. Sillanpää, E. Kallio, P. Janhunen, W. Schmidt, K. Mursula, J. Vilppola, P. Tanskanen, Hybrid simulation study of ion escape at Titan for different orbital positions. Adv. Space Res. 38, 799–805 (2006)

    ADS  Google Scholar 

  • E.C. Sittler Jr., A. Ali, J.F. Cooper, R.E. Hartle, R.E. Johnson, A.J. Coates, D.T. Young, Heavy ion formation in Titan’s ionosphere: magnetospheric introduction of free oxygen and a source of Titan’s aerosols?. Planet. Space Sci. 57, 1547–1557 (2009a)

    ADS  Google Scholar 

  • E.C. Sittler et al., Energy deposition processes in Titan’s upper atmosphere and its induced magnetosphere, in Titan form Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J.H. Waite (Springer, Berlin, 2009b). Chapter 16

    Google Scholar 

  • K. Stasiewicz, Y. Khotyaintsev, M. Berthomier, J.-E. Wahlund, Identification of widespread turbulence of dispersive Alfven waves. Geophys. Res. Lett. 27, 173–176 (2000)

    ADS  Google Scholar 

  • K. Szego et al., Charged particle environment of Titan during the T9 flyby. Geophys. Res. Lett. 34, L24S03 (2007)

    Google Scholar 

  • T. Tanaka, K. Murawski, Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two-component reacting plasma simulation. J. Geophys. Res. 102, 19805–19822 (1997)

    ADS  Google Scholar 

  • T. Turunen, J. Silén, T. Nygrén, L. Jalonen, Observation of a thin ES-layer by the EISCAT radar. Planet. Space Sci. 33, 1407 (1985)

    ADS  Google Scholar 

  • E. Vigren, Dissociative recombination of organic molecular ions of relevance for interstellar clouds and Titan’s upper atmosphere. PhD Thesis, Stockholm University (2010). ISBN 978-91-7447-133-5

  • U. Von Zahn, P. von der Gathen, G. Hansen, Forced release of sodium from upper atmosphere dust particles. Geophys. Res. Lett. 8, 65 (1987)

    Google Scholar 

  • V. Vuitton, P. Lavvas, R.V. Yelle, M. Galand, A. Wellbrock, G.R. Lewis, A.J. Coates, J.-E. Wahlund, Negative ion chemistry in Titan’s upper atmosphere. Planet. Space Sci. 57, 1558–1572 (2009)

    ADS  Google Scholar 

  • V. Vuitton, R.V. Yelle, M.J. McEwan, Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 191, 722–742 (2007)

    ADS  Google Scholar 

  • J.E. Wahlund, P. Louarn, T. Chust, H. de Feraudy, A. Roux, B. Holback, P.-O. Dovner, G. Holmgren, On ion acoustic turbulence and the nonlinear evolution of kinetic Alfven waves in aurora. Geophys. Res. Lett. 21, 1831–1834 (1994)

    ADS  Google Scholar 

  • J.-E. Wahlund, A.I. Eriksson, B. Holback, M.H. Boehm, J. Bonnel, P.M. Kintner, C.E. Seyler, J.H. Clemmons, L. Eliasson, D.J. Knudsen, P. Norqvist, L.J. Zanetti, Broadband ELF plasma emission during auroral energization 1. Slow ion acoustic waves. J. Geophys. Res. 103, 4343–4375 (1998)

    ADS  Google Scholar 

  • J.-E. Wahlund, R. Boström, G. Gustafsson, D.A. Gurnett, W.S. Kurth, A. Pedersen, T.F. Averkamp, G.B. Hospodarsky, A.M. Persoon, P. Canu, F.M. Neubauer, M.K. Dougherty, A.I. Eriksson, M.W. Morooka, R. Gill, M. André, L. Eliasson, I. Müller-Wodarg, Cassini measurements of cold plasma in the ionosphere of Titan. Science 308, 986–989 (2005)

    ADS  Google Scholar 

  • J.-E. Wahlund, M. Galand, I. Müller-Wodarg, J. Cui, R.V. Yelle, F.J. Crary, K. Mandt, B. Magee, J.H. Waite Jr., D.T. Young, A.J. Coates, P. Garnier, K. Ågren, M. André, A.I. Eriksson, T.E. Cravens, V. Vuitton, D.A. Gurnett, W.S. Kurth, On the amount of heavy molecular ions in Titan’s ionosphere. Planet. Space Sci. 57, 1857–1865 (2009)

    ADS  Google Scholar 

  • J.D. Whitehead, Production and prediction of sporadic E. Rev. Geophys. 8, 65 (1970)

    ADS  Google Scholar 

  • R.C. Whitten, B. Baldwin, W.C. Knudsen, K.L. Miller, K. Spenner, The Venus ionosphere at grazing incidence of solar radiation—Transport of plasma to the night ionosphere. Icarus 51, 261–270 (1982)

    ADS  Google Scholar 

  • E.H. Wilson, S.K. Atreya, Current state of modeling the photochemistry of Titan’s mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 (2004)

    Google Scholar 

  • P. Withers, Theoretical models of ionospheric electrodynamics and plasma transport. J. Geophys. Res. 113, A07301 (2008)

    Google Scholar 

  • J.H. Waite, H. Niemann, R.V. Yelle, W.T. Kasprzak, T.E. Cravens, J.G. Luhmann, R.L. McNutt, W.-H. Ip, D. Gell, V. De La Haye, I. Müller-Wordag, B. Magee, N. Borggren, S. Ledvina, G. Fletcher, E. Walter, R. Miller, S. Scherer, R. Thorpe, J. Xu, B. Block, K. Arnett, Ion neutral mass spectrometer results from the first flyby of Titan. Science 308, 982–986 (2005)

    ADS  Google Scholar 

  • J.H. Waite Jr., D.T. Young, T.E. Cravens, A.J. Coates, F.J. Crary, B. Magee, J. Westlake, The process of Tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007)

    ADS  Google Scholar 

  • J.H. Waite Jr., D.T. Young, A.J. Coates, F.J. Crary, B.A. Magee, K.E. Mandt, J.H. Westlake, The source of heavy organics and aerosols in Titan’s atmosphere. Proc. Int. Astron. Union 4, 321–326 (2008)

    Google Scholar 

  • H.Y. Wei et al., Cold ionospheric plasma in Titan’s magnetotail. Geophys. Res. Lett. 34, L24S06 (2007)

    Google Scholar 

  • R.C. Witten, P.T. McCormick, D. Merritt, K.W. Thompson, R.R. Brynswold, C.J. Eich, W.C. Knudsen, K.L. Miller, Dynamics of the Venus ionosphere: a two-dimensional model study. Icarus 60, 317–326 (1984)

    ADS  Google Scholar 

  • M. Yamauchi, J.-E. Wahlund, Role of the ionosphere for the atmospheric evolution of planets. Astrobiology 7, 5 (2007)

    Google Scholar 

  • R.V. Yelle, J. Cui, I.C.F. Müller-Wodarg, Methane escape from Titan’s atmosphere. J. Geophys. Res. 113, E10003 (2008)

    ADS  Google Scholar 

  • D.T. Young, J.-J. Berthelier, M. Blanc, J.L. Burch, A.J. Coates, R. Goldstein, M. Grande, T.W. Hill, R.E. Johnson, V. Kelha, D.J. McComas, E.C. Sittler, K.R. Svenes, K. Szegv, P. Tanskanen, K. Ahola, D. Anderson, S. Bakshi, R.A. Baragiola, B.L. Barraclough, R. Black, S. Bolton, T. Booker, R. Bowman, P. Casey, G. Dirks, N. Eaker, J.T. Gosling, H. Hannula, C. Holmlund, H. Huomo, J.-M. Illiano, P. Jensen, M.A. Johnson, D. Linder, T. Luntama, S. Maurice, K. McCabe, B.T. Narheim, J.E. Nordholt, A. Preece, J. Rutzki, A. Ruitberg, K. Smith, S. Szalai, M.F. Thomsen, K. Viherkanto, T. Vollmer, T.E. Wahl, M. Wuest, T. Ylikorpi, C. Zinsmeyer, Cassini plasma spectrometer investigation. Space Sci. Rev. 114, 1–112 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Coates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, A.J., Wahlund, JE., Ågren, K. et al. Recent Results from Titan’s Ionosphere. Space Sci Rev 162, 85–111 (2011). https://doi.org/10.1007/s11214-011-9826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9826-4

Keywords

Navigation