Skip to main content
Log in

Millennial Variations of the Geomagnetic Field: from Data Recovery to Field Reconstruction

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Variations of the geomagnetic field over past millennia can be determined from archeomagnetic data and paleomagnetic sediment records. The resolution and validity of any field reconstruction depends on the reliability of such indirect measurements of past field values. Considerable effort is invested to ensure that the magnetic minerals carrying the ancient magnetization are good, if not ideal, recorders of the magnetic field. This is achieved by performing a wide array of rock magnetic and microscopy investigations, many of which are outlined here. In addition to data quality, the spatial and temporal distributions of archeomagnetic and sediment records play a significant role in the accuracy of past field reconstruction. Global field reconstructions enable studies of dynamic processes in Earth’s core. They rely on data compilations which ideally include information about the quality of a measurement and provide a useful archive for selecting data with the best characteristics. There is, however, a trade off between the total number of reliable data and the geographic or temporal coverage. In this review we describe the various types of paleomagnetic recorders, and the kind of measurements that are performed to gather reliable geomagnetic field information. We show which modeling strategies are most suitable, and the main features of the field that can be derived from the resulting models. Finally, we discuss prospects for progress in this kind of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Aitken, A. Allsop, G. Bussell, M. Winter, Geomagnetic intensity in Egypt and western Asia during the second millennium BC. Nature 310, 306–308 (1984)

    Article  ADS  Google Scholar 

  • J. Bloxham, A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary. J. Geophys. Res. 97, 19537–19563 (1992)

    Article  ADS  Google Scholar 

  • M. Calvo, M. Prévot, M. Perrin, J. Riisager, Investigating the reasons for the failure of palaeointensity experiments: a study on historical lava flows from Mt. Etna (Italy). Geophys. J. Int. 149, 44–63 (2002)

    Article  ADS  Google Scholar 

  • C. Carvallo, A. Roberts, R. Leonhardt, C. Laj, C. Kissel, M. Perrin, P. Camps, Selecting samples for paleointensity measurements with FORC diagrams. J. Geophys. Res. 111, 12103 (2006). doi:10.1029/2005JB004126

    Article  ADS  Google Scholar 

  • G. Catanzariti, G. McIntosh, M. Gómez-Paccard, V. Ruiz-Martõnez, M. Osete, A. Chauvin, The AARCH Scientific Team, Quality control of archaeomagnetic determination using a modern kiln with a complex NRM. Phys. Chem. Earth 33, 427–437 (2008)

    Google Scholar 

  • J. Channel, Paleomagnetism, deep sea sediments, in Encyclopedia of Geomagnetism and Paleomagnetism, ed. by D. Gubbins, E. Herrero-Bervera (Springer, Dordrecht, 2007), pp. 781–788

    Chapter  Google Scholar 

  • A. Chauvin, Y. Garcia, P. Lanos, F. Laubenheimer, Paleointensity of the geomagnetic field recovered on archeomagnetic sites from France. Phys. Earth Planet. Inter. 120, 111–136 (2000)

    Article  ADS  Google Scholar 

  • R.S. Coe, Paleointensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks. J. Geophys. Res. 72, 3247–3262 (1967a)

    Article  ADS  Google Scholar 

  • R.S. Coe, The determination of paleointensities of the Earth’s magnetic field with emphasis on mechanism which could cause non-ideal behaviour in Thellier’s method. J. Geomagn. Geoelectr. 19, 157–159 (1967b)

    Google Scholar 

  • R.S. Coe, J. Riisager, G. Plenier, R. Leonhardt, D. Krasa, Multidomain behavior during Thellier paleointensity experiments, results from the 1915 Mt. Lassen flow. Phys. Earth Planet. Inter. 147, 141–153 (2004)

    Article  ADS  Google Scholar 

  • C. Constable, Eastern Australian geomagnetic field intensity over the past 14000 years. Geophys. J. R. Astron. Soc. 81, 121–130 (1985)

    Google Scholar 

  • C. Constable, On rates of occurrence of geomagnetic reversals. Phys. Earth Planet. Inter. 118, 181–193 (2000)

    Article  ADS  Google Scholar 

  • C. Constable, Archeomagnetic and paleomagnetic studies of centennial to millennial-scale geomagnetic field variations, in Treatises of Geophysics, ed. by M. Kono, G. Schubert. Geomagnetism, vol. 5 (Elsevier, Amsterdam, 2007), pp. 337–3729

    Chapter  Google Scholar 

  • C. Constable, M. Korte, Is Earth’s magnetic field reversing? Earth Planet. Sci. Lett. 246(1–2), 1–16 (2006)

    Article  ADS  Google Scholar 

  • C. Constable, L. Tauxe, Palaeointensity in the pelagic realm: marine sediment data compared with archaeomagnetic and lake sediment records. Geophys. J. R. Astron. Soc. 90, 43–59 (1987)

    Google Scholar 

  • C.G. Constable, M.W. McElhinny, Holocene geomagnetic secular variation records from north-eastern Australian lake sediments. Geophys. J. R. Astron. Soc. 81, 103–120 (1985)

    Google Scholar 

  • R.D. Cottrell, J.A. Tarduno, M.K. Watkeys, T.N. Huffman, Multispecimen and temper archeomagnetic studies: Application to Iron Age sites from southern Africa. AGU Fall Meeting Abstracts, 3 (2008)

  • K. Creer, P. Tucholka, The dispersion of the geomagnetic field due to secular variation and its determination for remote times from paleomagnetic data. Philos. Trans. R. Soc. Lond. 306, 87–102 (1982)

    Article  ADS  Google Scholar 

  • L. Daly, M. Le Goff, An updated and homogeneous world secular variation database. 1. Smoothing of the archeomagnetic results. Phys. Earth Planet. Inter. 93, 159–190 (1996)

    Article  Google Scholar 

  • R. Day, M.D. Fuller, V.A. Schmidt, Hysteresis properties of titano-magnetites: grain size and composition dependance. Phys. Earth Planet. Inter. 13, 260–266 (1977)

    Article  ADS  Google Scholar 

  • M. Dekkers, H. Böhnel, Reliable absolute palaeointensities independent of magnetic domain state. Earth Planet. Sci. Lett. 248, 507–516 (2006)

    Article  ADS  Google Scholar 

  • F. Donadini, P. Riisager, K. Korhonen, K. Kahma, L. Pesonen, I. Snowball, Holocene geomagnetic paleointensities: A blind test of absolute paleointensity techniques and materials. Phys. Earth Planet. Inter. 161, 19–35 (2007a)

    Article  ADS  Google Scholar 

  • F. Donadini, M. Kovacheva, M. Kostadinova, L. Casas, L. Pesonen, New archaeointensity results from Scandinavia and Bulgaria. Rock-magnetic studies inference and geophysical application. Phys. Earth Planet. Inter. 165, 229–247 (2007b)

    Article  ADS  Google Scholar 

  • F. Donadini, M. Korte, C. Constable, Geomagnetic Field for 0–3 ka: 1. New data sets for global modeling. Geochem. Geophys. Geosyst. 10, Q06007 (2009). doi:10.1029/2008GC002297

    Article  Google Scholar 

  • M. Dumberry, J. Bloxham, Azimuthal flows in the Earth’s core and changes in length of day at millennial timescales. Geophys. J. Int. 165, 32–46 (2006)

    Article  ADS  Google Scholar 

  • M. Dumberry, C. Finlay, Eastward and westward drift of the Earth’s magnetic field for the last three millennia. Earth Planet. Sci. Lett. 254, 146–157 (2007)

    Article  ADS  Google Scholar 

  • D. Dunlop, Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. 107 (2002). doi:10.1029/2001000486

  • D. Dunlop, Ö. Özdemir, Rock Magnetism, Fundamentals and Frontiers (Cambridge University Press, Cambridge, 1997), p. 573

    Book  Google Scholar 

  • K. Fabian, R. Leonhardt, A guide to multiple specimens paleointensity, in Abstracts Book of the IAGA XI Scientific Assembly, Sopron, Hungary (International Association of Geomagnetism and Aeronomy, De Bilt, 2009), 112-09001042

    Google Scholar 

  • Y. Gallet, A. Genevey, V. Courtillot, On the possible occurrance of ‘archaeomagnetic jerks’ in the geomagnetic field over the past three millennia. Earth Planet. Sci. Lett. 214, 237–242 (2003)

    Article  ADS  Google Scholar 

  • Y. Gallet, A. Genevey, F. Fluteau, Does Earth’s magnetic field secular variation control centennial climate change? Earth Planet. Sci. Lett. 236, 339–347 (2005)

    Article  ADS  Google Scholar 

  • A. Genevey, Y. Gallet, Intensity of the geomagnetic field in western Europe over the past 2000 years: New data from ancient French pottery. J. Geophys. Res. 107, 1–18 (2002)

    Article  Google Scholar 

  • A. Genevey, Y. Gallet, C. Constable, M. Korte, G. Hulot, ArcheoInt: an upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment. Geochem. Geophys. Geosyst. 9, Q04038 (2008). doi:10.1029/2007GC001881

    Article  Google Scholar 

  • C. Gogorza, A. Sinito, J. Lirio, H. Nuñez, M. Chaparro, J. Vilas, Paleosecular variations 0–19,000 years recorded by sediments from Escondido Lake (Argentina). Phys. Earth Planet. Inter. 133, 35–55 (2002)

    Article  ADS  Google Scholar 

  • M. Gomez-Paccard, A. Chauvin, P. Lanos, J. Thiriot, P. Jimenez-Castillo, Archeomagnetic study of seven contemporaneous kilns from Murcia (Spain). Phys. Earth Planet. Inter. 157, 16–32 (2006)

    Article  ADS  Google Scholar 

  • M.N. Gratton, J. Shaw, E. Herrero-Bervera, An absolute palaeointensity record from SOH1 lava core, Hawaii, using the microwave technique. Phys. Earth Planet. Inter. 148, 193–214 (2005)

    Article  ADS  Google Scholar 

  • D. Gubbins, Can the Earth’s magnetic field be sustained by core oscillations? Geophys. Res. Lett. 2, 409–412 (1975)

    Article  ADS  Google Scholar 

  • D. Gubbins, J. Bloxham, Geomagnetic field analysis—III. Magnetic fields on the core-mantle boundary. Geophys. J. R. Astron. Soc. 80, 695–713 (1985)

    ADS  Google Scholar 

  • G.V. Haines, Spherical cap harmonic analysis. J. Geophys. Res. 90, 2583–2591 (1985)

    Article  ADS  Google Scholar 

  • G.A. Hartmann, R.I. Trindade, A. Goguitchaichvili, M.C. Afonso, Archeointensity from 1300–200 BP Brazilian Pottery. AGU Spring Meeting Abstracts, 3 (2007)

  • M.J. Hill, M.N. Gratton, J. Shaw, A comparison of thermal and microwave palaeomagnetic techniques using lava containing laboratory induced remanence. Geophys. J. Int. 151, 157–163 (2002)

    Article  ADS  Google Scholar 

  • G. Hulot, C. Eymin, B. Langlais, M. Mandea, N. Olsen, Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature 416, 620–623 (2002)

    Article  ADS  Google Scholar 

  • A. Jackson, A. Jonkers, M. Walker, Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. A 358, 957–990 (2000)

    Article  ADS  Google Scholar 

  • N. Jordanova, E. Petrowsky, M. Kovacheva, Preliminary rock magnetic study of archeomagnetic samples from Bulgarian prehistoric sites. J. Geomagn. Geoelectr. 49, 543–566 (1997)

    Google Scholar 

  • J.L. Kirschwink, The least–square line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astron. Soc. 62, 699–718 (1980)

    Google Scholar 

  • M.F. Knudsen, P. Riisager, F. Donadini, I. Snowball, R. Muscheler, K. Korhonen, L.J. Pesonen, B.H. Jacobsen, Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr. Earth Planet. Sci. Lett. 272, 319–329 (2008)

    Article  ADS  Google Scholar 

  • K. Korhonen, F. Donadini, P. Riisager, L. Pesonen, GEOMAGIA50: an archeointensity database with PHP and MySQL. Geochem. Geophys. Geosyst. 9, Q04029 (2008). doi:10.1029/2007GC001893

    Article  Google Scholar 

  • M. Korte, C.G. Constable, Continuous global geomagnetic field models for the past 3000 years. Phys. Earth Planet. Inter. 140, 73–89 (2003)

    Article  ADS  Google Scholar 

  • M. Korte, C.G. Constable, Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochem. Geophys. Geosyst. 6, Q02H16 (2005a). doi:10.1029/2004GC000801

    Article  Google Scholar 

  • M. Korte, C.G. Constable, The geomagnetic dipole moment over the last 7000 years—new results from a global model. Earth Planet. Sci. Lett. 236, 348–358 (2005b)

    Article  ADS  Google Scholar 

  • M. Korte, C. Constable, On the use of calibrated relative paleointensity records to improve millennial-scale geomagnetic field models. Geochem. Geophys. Geosyst. 7, Q09004 (2006). doi:10.1029/2006GC001368

    Article  Google Scholar 

  • M. Korte, C.G. Constable, Spatial and temporal resolution of millennial scale geomagnetic field models. Adv. Space Res. 41, 57–69 (2008)

    Article  ADS  Google Scholar 

  • M. Korte, A. Genevey, C.G. Constable, U. Frank, E. Schnepp, Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation. Geochem. Geophys. Geosyst. 6, Q02H15 (2005). doi:10.1029/2004GC000800

    Article  Google Scholar 

  • M. Korte, F. Donadini, C. Constable, Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models. Geochem. Geophys. Geosyst. 10, Q06008 (2009). doi:10.1029/2008GC002297

    Article  Google Scholar 

  • M. Kovacheva, I. Hedley, N. Jorvanova, M. Kostadinova, V. Gigov, Archaeomagnetic dating of archaeological sites from Switzerland and Bulgaria. J. Archeol. Sci. 31, 1463–1479 (2004)

    Article  Google Scholar 

  • D. Krása, C. Heunemann, R. Leonhardt, N. Petersen, Experimental procedure to detect multidomain remanence during Thellier-Thellier experiments. Phys. Chem. Earth 28, 681–687 (2003)

    Google Scholar 

  • P. Lanos, M. LeGoff, M. Kovacheva, E. Schnepp, Hierarchical modelling of archaeomagnetic data and curve estimation by moving average technique. Geophys. J. Int. 160, 440–476 (2005)

    Article  ADS  Google Scholar 

  • N. Lifton, D.F. Smart, M.A. Shea, Scaling time-integrated in situ cosmogenic nuclide production rates using a continuous geomagnetic model. Earth Planet. Sci. Lett. 268, 190–201 (2008)

    Article  ADS  Google Scholar 

  • A. Lodge, R. Holme, Towards a new approach to archeomagnetic dating in Europe using geomagnetic field modeling. Archaeometry 50, 309–322 (2008). doi:10.1111/j.1475-4754.2008.00400.x

    Google Scholar 

  • W. Lowrie, Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett. 2, 159–162 (1990)

    Article  ADS  Google Scholar 

  • F. Mackereth, On the variation in direction of the horizontal component of remanent magnetisation in lake sediments. Earth Planet. Sci. Lett. 12, 332–338 (1971)

    Article  ADS  Google Scholar 

  • M.W. McElhinny, W.E. Senanayake, Variations in the geomagnetic dipole: I. The past 50 000 years. J. Geomagn. Geoelectr. 34, 39–51 (1982)

    ADS  Google Scholar 

  • P. McFadden, M. McElhinny, The combined analysis of remagnetization circles and direct observations in paleomagnetism. Earth Planet. Sci. Lett. 87, 161–172 (1988)

    Article  ADS  Google Scholar 

  • G. McIntosh, M. Kovacheva, M.L. Osete, L. Casas, Widespread occurrence of a novel high coercivity, thermally stable, low unblocking temperature magnetic phase in heated archeological material. Geophys. Res. Lett. 34, L21302 (2007). doi:10.1029/2007GL031168

    Article  ADS  Google Scholar 

  • R. Merrill, M. McElhinny, M. McFadden, The Magnetic Field of the Earth (Academic Press, San Diego, 1996), p. 531

    Google Scholar 

  • T. Nagata, Rock Magnetism (Maruzen Co., Tokyo, 1961), p. 350

    Google Scholar 

  • P. Olson, The disappearing dipole. Nature 416, 591–594 (2002)

    Article  ADS  Google Scholar 

  • Y.X. Pan, J. Shaw, R.X. Zhu, M.J. Hill, Experimental reassessment of the Shaw paleointensity method using laboratory-induced thermal remanent magnetization. J. Geophys. Res. 107, 2129 (2002)

    Article  ADS  Google Scholar 

  • F. Pavón-Carrasco, M. Osete, J. Torta, L. Gaya-Piqué, P. Lanos, Initial scha.di.00 regional archaeomagnetic model for Europe for the last 2000 years. Phys. Chem. Earth 33, 596–608 (2008)

    Google Scholar 

  • F. Pavón-Carrasco, M. Osete, M. Torta, L. Gaya-Piqué, A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: Applications to archeomagnetic dating. Geochem. Geophys. Geosyst. 10, Q03013 (2009). doi:10.1029/2008GC002244

    Article  Google Scholar 

  • P. Reimer, M. Baillie, E. Bard, A. Bayliss, J. Beck, C. Bertrand, P. Blackwell, C. Buck, G. Burr, K. Cutler, P. Damon, R. Edwards, R. Fairbanks, M. Friedrich, T.G.A. Hogg, K. Hughen, B. Kromer, F. McCormac, S. Manning, C. Ramsey, R. Reimer, S. Remmele, J. Southon, M. Stuiver, S. Talamo, F. Taylor, J. van der Plicht, C. Weyhenmeyer, IntCal04 Terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46, 1029–1058 (2004)

    Google Scholar 

  • P. Riisager, J. Riisager, Detecting multidomain magnetic grains in Thellier paleointensity experiments. Phys. Earth Planet. Inter. 125, 111–117 (2001)

    Article  ADS  Google Scholar 

  • E. Schnepp, On correction of loss of mass during Thellier experiments. Phys. Earth Planet. Inter. 135, 225–229 (2003)

    Article  ADS  Google Scholar 

  • R.S. Selesnick, M.D. Looper, R.A. Mewaldt, A theoretical model of the inner proton radiation belt. Space Weather 5, S04003 (2007). doi:10.1029/2006SW000275

    Article  Google Scholar 

  • J. Shaw, A new method of determining the magnitude of the palaeomagnetic field; application to five historic lavas and five archaeological samples. Geophys. J. R. Astron. Soc. 39, 133–141 (1974)

    Google Scholar 

  • J. Shaw, D. Walton, S. Yang, T.C. Rolph, J.A. Share, Microwave archaeointensities from Peruvian ceramics. Geophys. J. Int. 124, 241–244 (1996)

    Article  ADS  Google Scholar 

  • J. Shaw, S. Yang, T.C. Rolph, F.Y. Sun, A comparison of archaeointensity results from Chinese ceramics using microwave and conventional Thellier’s and Shaw’s methods. Geophys. J. Int. 136, 714–718 (1999)

    Article  ADS  Google Scholar 

  • V.V. Shcherbakova, V.P. Shcherbakov, Properties of partial thermoremanent magnetization in pseudosingle domain and multidomain grains. J. Geophys. Res. 105, 767–781 (2000)

    Article  ADS  Google Scholar 

  • I. Snowball, L. Zillen, A. Ojala, T. Saarinen, P. Sandgren, FENNOSTACK and FENNORPIS: Varve dated Holocene palaeomagnetic secular variation and relative palaeointensity stacks for Fennoscandia. Earth Planet. Sci. Lett. 255, 106–116 (2007)

    Article  ADS  Google Scholar 

  • F. Stark, J. Cassidy, M.N. Gratton, M.J. Hill, J. Shaw, P.J. Sheppard, Establishing a new archaeomagnetic record for the SW pacific. AGU Fall Meeting Abstracts, 690 (2008)

  • J. Stober, R. Thompson, An investigation into the source of magnetic minerals in some Finnish lake sediments. Earth Planet. Sci. Lett. 45, 464–474 (1979)

    Article  ADS  Google Scholar 

  • D. Tarling, N. Hammo, W. Downey, The scatter of magnetic directions in archaeomagnetic studies. Geophysics 51(3), 634–639 (1986)

    Article  ADS  Google Scholar 

  • L. Tauxe, Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev. Geophys. 31, 319–354 (1993)

    Article  ADS  Google Scholar 

  • L. Tauxe, T. Mullender, T. Pick, Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. J. Geophys. Res. 101, 571–583 (1996)

    Article  ADS  Google Scholar 

  • L. Tauxe, J. Steindorf, A. Harris, Depositional remanent magnetization: Toward an improved theoretical and experimental foundation. Earth Planet. Sci. Lett. 244, 515–529 (2006)

    Article  ADS  Google Scholar 

  • L. Tauxe, R. Butler, S. Banerjee, R. van der Voo, Essentials of Paleomagnetism (University of California Press, San Diego, 2009), p. 504

    Google Scholar 

  • E. Thellier, O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys. 15, 285–376 (1959)

    Google Scholar 

  • I.G. Usoskin, S.K. Solanki, M. Korte, Solar activity reconstructed over the last 7000 years: the influence of geomagnetic field changes. Geophys. Res. Lett. 33, L08103 (2006). doi:10.1029/2006GL025921

    Article  Google Scholar 

  • I. Usoskin, M. Korte, G. Kovaltsov, Role of centennial geomagnetic changes in local atmospheric ionization. Geophys. Res. Lett. 35, L05811 (2008). doi:10.1029/2007GL033040

    Article  Google Scholar 

  • J.P. Valet, E. Herrero-Bervera, J.L. LeMoüel, G. Plenier, Secular variation of the geomagnetic dipole during the past 2000 years. Geochem. Geophys. Geosyst. 9, Q01008 (2008). doi:10.1029/2007GC001728

    Article  Google Scholar 

  • R.J. Veitch, I.G. Hedley, J.J. Wagner, An investigation of the intensity of the geomagnetic field during Roman times using magnetically anisotropic bricks and tiles. Arch. Sci. Genève 37, 359–373 (1984)

    Google Scholar 

  • D. Walton, A new technique for determining palaeomagnetic intensities. J. Geomagn. Geoelectr. 43, 333–339 (1991)

    Google Scholar 

  • I. Wardinski, M. Korte, The evolution of the core-surface flow over the last seven thousand years. J. Geophys. Res. 113, B05101 (2008). doi:10.1029/2008JB005024

    Article  Google Scholar 

  • Y. Yamamoto, H. Tsunakava, H. Shibuya, Palaeointensity study of the Hawaiian 1960 lava: implications for possible causes of erroneously high intensities. Geophys. J. Int. 153, 263–276 (2003)

    Article  ADS  Google Scholar 

  • S. Yang, J. Shaw, Q.Y. Wei, A comparison of archaeointensity results from Chinese ceramics using Thellier’s and Shaw’s palaeointensity methods. Geophys. J. Int. 113, 499–508 (1993)

    Article  ADS  Google Scholar 

  • Y. Yu, D. Dunlop, Ö. Özdemir, Are ARM and TRM analogs? Thellier analysis of ARM and pseudo-Thellier analysis of TRM. Earth Planet. Sci. Lett. 205, 325–336 (2003)

    Article  ADS  Google Scholar 

  • Y. Yu, L. Tauxe, A. Genevey, Towards an optimal geomagnetic field intensity determination technique. Geochem. Geophys. Geosyst. 5, 1–18 (2004)

    Google Scholar 

  • J. Zijderveld, A.F. demagnetization of rocks: analysis and results, in Methods in Paleomagnetism, ed. by D. Collinson, K. Creer, S. Runcorn (Elsevier, Amsterdam, 1967), pp. 254–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Donadini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donadini, F., Korte, M. & Constable, C. Millennial Variations of the Geomagnetic Field: from Data Recovery to Field Reconstruction. Space Sci Rev 155, 219–246 (2010). https://doi.org/10.1007/s11214-010-9662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9662-y

Keywords

Navigation