Skip to main content
Log in

Quasi-perpendicular Shock Structure and Processes

  • Published:
Space Science Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Asbridge, J. R., S. J. Bame, and I. B. Strong: 1968, ‘Outward flow of protons from the Earth's bow shock’. J. Geophys. Res. 73(12), 5777.

    Article  ADS  Google Scholar 

  • Bagenal, F., J. W. Belcher, E. C. Sittler, Jr., and R. P. Lepping: 1987, ‘The Uranian Bow Shock: Voyager 2 Inbound Observations of a High Mach Number Shock’. J. Geophys. Res. 92, 8603.

    Article  ADS  Google Scholar 

  • Bale, S. D., F. S. Mozer, and T. S. Horbury: 2003, ‘Density-transition scale at quasiperpendicular collisionless shocks’. Physical Review Letters 91(26), 265004.

  • Balikhin, M., M. Gedalin, and A. Petrukovich: 1995, ‘The scales in quasiperpendicular shocks’. Adv. Space. Res. 15, 247.

    Article  ADS  Google Scholar 

  • Balikhin, M., V. Krasnosel'skikh, and M. Gedalin: 1993, ‘New mechanism for heating in shocks’. Phys. Rev. Lett. 70, 1259.

    Article  ADS  Google Scholar 

  • Balikhin, M. A., M. Nozdrachev, M. Dunlop, V. Krasnosel'skikh, S. N. Walker, H. S. K. Alleyne, V. Formisano, M. André, A. Balogh, A. Eriksson, and K. Yearby: 2002, ‘Observation of the terrestrial bow shock in quasi-electrostatic sub-shock regime’. J. Geophys. Res. 107, 1155, doi: 1029/2001JA000327.

  • Bame, S. J., J. R. Asbridge,W. C. Feldman, J. T. Gosling, G. Paschmann, and N. Sckopke: 1980, ‘Deceleration of the solar wind upstream from the Earth's bow shock and the origin of diffuse upstream ions’. J. Geophys. Res. 85(14), 2981–2990.

  • Bonifazi, C. and G. Moreno: 1981, ‘Reflected and diffuse ions backstreaming from the earth's bow shock. I Basic properties’. J. Geophys. Res. 86(15), 4397–4413.

    Article  ADS  Google Scholar 

  • Burgess, D.: 1987, ‘Shock drift acceleration at low energies’. J. Geophys. Res. 92(11), 1119–1130.

    Article  ADS  Google Scholar 

  • Burgess, D.: 1987, ‘Simulations of backstreaming ion beams formed at oblique shocks by direct reflection’. Ann. Geophys. 5, 133–145.

    ADS  Google Scholar 

  • Burgess, D.: 1989, ‘Alpha particles in field-aligned beams upstream of the bow shock - Simulations’. Geophys. Res. Lett. 16, 163–166.

    Article  ADS  Google Scholar 

  • Burgess, D. and J. G. Luhmann: 1986, ‘Scatter-free propagation of low energy protons in the magnetosheath: Implications for the production of field-aligned beams by non-thermal leakage’. J. Geophys. Res. 91, 1439–1449.

    Article  ADS  Google Scholar 

  • Burgess, D. and S. J. Schwartz: 1984, ‘The dynamics and upstream distributions of ions reflected at the Earth's bow shock’. J. Geophys. Res. 89(18), 7407–7422.

    Article  ADS  Google Scholar 

  • Dunlop, M. W., A. Balogh, and K.-H. Glassmeier: 2002, ‘Four-point Cluster application of magnetic field analysis tools: The discontinuity analyzer’. J. Geophys. Res. 107, 1385, doi:10.1029/2001JA005089.

  • Dunlop, M. W. and T. I. Woodward: 1998, ‘Discontinuity analysis: Orientation and motion’. In: Analysis Methods for Multispacecraft Data, Vol. ISSI Sci. Rep. SR-001. Norwell, Mass.: Kluwer Acad., p. 271.

  • Eastwood, J., E. A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, and R. Treumann: 2005, ‘The Foreshock’. Space Sci. Rev. this issue.

  • Edmiston, J., C. Kennel, and D. Eichler: 1982, ‘Escape of heated ions upstream of quasi-parallel shocks’. Geophys. Res. Lett. 9, 531–534.

    Google Scholar 

  • Eselevich, V. G.: 1982, ‘Shock-wave structure in collisionless plasmas from results of laboratory experiments’. Space Science Reviews 32, 65–81.

    Article  ADS  Google Scholar 

  • Eselevich, V. G., A. G. Eskov, R. C. Kurtmullaev, and A. I. Malyutin: 1971, ‘Isomagnetic discontinuity in a collisionless shock wave’. Soviet Phys. JETP 33, 1120.

    ADS  Google Scholar 

  • Farris, M. H. and C. T. Russell: 1994, ‘Determining the standoff distance of the bow shock: Mach number dependence and use of models’. J. Geophys. Res. 99(18), 17681.

    Article  ADS  Google Scholar 

  • Formisano, V.: 1979, ‘The three-dimensional shape of the bow shock’. Nuovo Cimento C Geophysics Space Physics C 2, 681–692.

    ADS  Google Scholar 

  • Formisano, V.: 1982, ‘Measurement of the potential drop across the Earth's collisionless bow shock’. Geophys. Res. Lett. 9, 1033.

    Article  ADS  Google Scholar 

  • Formisano, V.: 1985, ‘Collisionless shock waves in space and astrophysical plasmas’. In: Proc. ESA workshop on future missions in solar, heliospheric and space plasma physics, Vol. ESA SP-235. p. 83.

  • Formisano, V. and R. Torbert: 1982, ‘Ion acoustic wave forms generated by ion-ion streams at the Earth's bow shock’. Geophys. Res. Lett. 9, 207.

    Article  ADS  Google Scholar 

  • Fuselier, S. and M. F. Thomsen: 1992, ‘He2+ in field-aligned beams: ISEE results’. Geophys. Res. Lett. 19, 437.

    Article  ADS  Google Scholar 

  • Fuselier, S. A. and W. K. H. Schmidt: 1994, ‘H+ and He2+ heating at the Earth's bow shock’. J. Geophys. Res. 99(18), 11539–11546.

    Article  ADS  Google Scholar 

  • Galeev, A. A., C. F. Kennel, V. V. Krasnoselskikh, and V. V. Lobzin: 1988a, ‘Quasiperpendicular collisionless high Mach number shocks’. In: Proc. Joint Varenna-Abastumani Int. School & Workshop on Plasma Astrophysics, Varenna, Italy, 24 Aug - 3 September. pp. 173–183.

  • Galeev, A. A., C. F. Kennel, V. V. Krasnoselskikh, and V. V. Lobzin: 1988b, ‘The role of whistler oscillations in the formation of the structure of high Mach number collisionless shock’. In: Proc. Joint Varenna-Abastumani Int. School & Workshop on Plasma Astrophysics, Varenna, Italy, 24 Aug - 3 September. pp. 165–171.

  • Galeev, A. A., V. V. Krasnoselskikh, and V. V. Lobzin: 1988c, ‘On the fine structure of the quasiper-pendicular supercritical collisonless shock,’. Sov. J. Plasma Phys. 14, 697.

    Google Scholar 

  • Gedalin, M. and E. Griv: 1999, ‘Role of overshoots in the formation of the downstream distribution of adiabatic electrons’. J. Geophys. Res. 104(13), 14821–14826.

    Google Scholar 

  • Giacalone, J., T. P. Armstrong, and R. B. Decker: 1991, ‘Effect of magnetic overshoot on shock drift acceleration’. J. Geophys. Res. 96(15), 3621–3626.

    Article  ADS  Google Scholar 

  • Gosling, J. T., J. R. Asbridge, S. J. Bame, G. Paschmann, and N. Sckopke: 1978, ‘Observations of two distinct populations of bow shock ions in the upstream solar wind’. Geophys. Res. Lett. 5, 957–960.

    Article  ADS  Google Scholar 

  • Gosling, J. T. and A. E. Robson: 1985, ‘Ion reflection, gyration, and dissipation at supercritical shocks’. In: B. Tsurutani and R. Stone (eds.): Collisionless Shocks in the Heliosphere: Reviews of current research, Geophys. Monogr. Ser. vol 35. Washington, D.C.: American Geophysical Union, pp. 141–152.

  • Greenstadt, E. W., C. T. Russell, and M. Hoppe: 1980, ‘Magnetic field orientation and suprathermal ion streams in the Earth's foreshock’. J. Geophys. Res. 85(.14), 3473–3479.

    Article  ADS  Google Scholar 

  • Gustafsson, G., R. Bostrøm, B. Holback, G. Holmgren, A. Lundgren, K. Stasiewicz, L. Åéhlen, F. S. Mozer, D. Pankow, P. Harvey, P. Berg, R. Ulrich, A. Pedersen, R. Schmidt, A. Butler, A. W. C. Fransen, D. Klinge, M. Thomsen, C.-G. Falthämmar, P.-A. Lindqvist, S. Christenson, J. Holtet, B. Lybekk, T. A. Sten, P. Tanskanen, K. Lappalainen, and J.Wygant: 1997, ‘The electric field and wave experiment for the Cluster mission’. Space Sci. Rev. 79, 137–156.

    Article  ADS  Google Scholar 

  • Hada, T., M. Oonishi, B. Lembège, and P. Savoini: 2003, ‘Shock front nonstationarity of supercritical perpendicular shocks’. J. Geophys. Res. 108, 1233, doi:10.1029/2002JA009339.

    Google Scholar 

  • Hellinger, P., P. Trávnícek, and H. Matsumoto: 2002, ‘Reformation of perpendicular shocks: Hybrid simulations’. Geophys. Res. Lett. 29, 2234, doi:10.1029/2002GL015915.

  • Heppner, J. P., N. C. Maynard, and T. L. Aggson: 1978, ‘Early results from ISEE-1 electric field measurements’. Space Sci. Rev. 22, 777.

    Article  ADS  Google Scholar 

  • Heppner, J. P., M. Sugiura, T. L. Skillman, B. G. Ledley, and M. Campbell: 1967, ‘OGO-A magnetic field observations’. J. Geophys. Res. 72(11), 5417.

    Article  ADS  Google Scholar 

  • Horbury, T. S., P. Cargill, E. A. Lucek, A. Balogh, M. W. Dunlop, T. Oddy, C. Carr, A. Szabo, and K.-H. Fornacon: 2001, ‘Cluster magnetic field observations of the bowshock: Orientation, motion and structure’. Ann. Geophys. 19, 1399–1409.

    ADS  Google Scholar 

  • Horbury, T. S., P. J. Cargill, E. A. Lucek, J. Eastwood, A. Balogh, M. W. Dunlop, K.-H. Fornaçon, and E. Georgescu: 2002, ‘Four spacecraft measurements of the quasi-perpendicular terrestrial bowshock: Orientation and motion’. J. Geophys. Res. 107(A8), 1208, doi 10.1029/2001JA000273.

  • Ipavich, F. M., G. Gloeckler, D. Hamliton, and L. Kistler: 1988, ‘Protons and alpha particles in field-aligned beams upstream of the bow shock’. Geophys. Res. Lett. 15, 1153.

    Article  ADS  Google Scholar 

  • Karpman, V. I.: 1964, ‘Structure of the shock front propagating at an angle of the magnetic field in a low density plasma’. Sov. Phys. Tech. Phys. Engl. Trans. 8, 715.

    Google Scholar 

  • Kennel, C. F., J. P. Edmiston, and T. Hada: 1985, ‘A quarter century of collisionless shock research’. Washington DC American Geophysical Union Geophysical Monograph Series 34, 1–36.

    ADS  Google Scholar 

  • Krasnosel'skikh, V. V.: 1985, ‘Nonlinear plasma motions across the magnetic field’. Sov. Phys. JETP 62, 282.

    Google Scholar 

  • Krasnosel'skikh, V. V., T. Vinogradova, M. A. Balikhin, H. S. C. Alleyne, A. K. Pardaens, L. J. C. Woolliscroft, S. I. Klimov, A. Petrukovich, W. A. C. Mier-Jedrzejowicz, and D. J. Southwood: 1991, ‘On the nature of low frequency turbulence in the foot of strong quasi-perpendicular shocks’. Advances in Space Research 11, 15–18.

    Article  ADS  Google Scholar 

  • Krasnosselskikh, V., B. Lemb‘ege, P. Savoini, and V. V. Lobzin: 2002, ‘Nonstationarity of strong collisionless quasiperpendicular shocks: Theory versus full particle numerical simulations’. Phys. Plasmas 9(4), 1192.

    Article  ADS  MathSciNet  Google Scholar 

  • Kucharek, H., E. Möbius, M. Scholer, C. Mouikis, L. Kistler, T. Horbury, A. Balogh, H. Réme, and J. Bosqued: 2004, ‘On the origin of field-aligned beams at the quasi-perpendicular bow shock: Multi-spacecraft observations by Cluster’. Ann. Geophys. 22, 2301–2308.

    ADS  Google Scholar 

  • Lembège, B. and J. M. Dawson: 1987a, ‘Plasma heating through a supercritical oblique collisionless shock’. Physics of Fluids 30, 1110–1114.

    Article  ADS  Google Scholar 

  • Lembège, B. and J. M. Dawson: 1987b, ‘Self-consistent study of a perpendicular collisionless and nonresistive shock’. Physics of Fluids 30, 1767–1788.

    Article  ADS  Google Scholar 

  • Lembège, B. and P. Savoini: 1992, ‘Nonstationarity of a two-dimensional quasiperpendicular supercritical collisionless shock by self-reformation’. Physics of Fluids B 4, 3533–3548.

    Article  ADS  Google Scholar 

  • Lembège, B., S. N. Walker, P. Savoini, M. A. Balikhin, and V. Krasnosel'skikh: 1999, ‘The spatial sizes of electric and magnetic field gradients in a simulated shock’. Adv. Space. Res. 24, 109–112.

    Article  ADS  Google Scholar 

  • Lepidi, S., U. Villante, and A. J. Lazarus: 1997, ‘Single spacecraft identification of the bow shock orientation and speed: A comparison between different methods’. Nuovo Cimento C Geophysics Space Physics C 20, 911.

    ADS  Google Scholar 

  • Leroy, M. M., C. C. Goodrich, D. Winske, C. S. Wu, and K. Papadopoulos: 1981, ‘Simulation of a perpendicular bow shock’. Geophys. Res. Lett. 8, 1269–1272.

    Article  ADS  Google Scholar 

  • Leroy, M. M. and D. Winske: 1983, ‘Backstreaming ions from oblique Earth bow shocks’. Annales Geophysicae 1, 527–536.

    ADS  Google Scholar 

  • Leroy, M. M., D. Winske, C. C. Goodrich, C. S. Wu, and K. Papadopoulos: 1982, ‘The structure of perpendicular bow shocks’. J. Geophys. Res. 87, 5081.

    Article  ADS  Google Scholar 

  • Liewer, P. C., V. K. Decyk, J. M. Dawson, and B. Lembège: 1991, ‘Numerical studies of electron dynamics in oblique quasi-perpendicular collisionless shock waves’. J. Geophys. Res. 96, 9455.

    Article  ADS  Google Scholar 

  • Lin, R. P., C. I. Meng, and K. A. Anderson: 1974, ‘30 -100 keV protons upstream from the Earth bow shock’. J. Geophys. Res. 79, 489.

    Article  ADS  Google Scholar 

  • Livesey, W. A., C. F. Kennel, and C. T. Russell: 1982, ‘ISEE-1 and -2 observations of magnetic field strength overshoots in quasi-perpendicular bow shocks’. Geophys. Res. Lett. 9, 1037–1040.

    Article  ADS  Google Scholar 

  • Livesey, W. A., C. T. Russell, and C. F. Kennel: 1984, ‘A comparison of specularly reflected gyrating ion orbits with observed shock foot thicknesses’. J. Geophys. Res. 89(18), 6824–6828.

    Article  ADS  Google Scholar 

  • Maksimovic, M., S. D. Bale, T. S. Horbury, and M. André: 2003, ‘Bow shock motions observed with CLUSTER’. Geophys. Res. Lett. 30, 1393, doi:10.1029/2002GL016761.

    Google Scholar 

  • Meziane, K., C. Mazelle, M. Wilber, D. Lequéau, J. Eastwood, H. Rème, I. Dandouras, J. Sauvaud, J. Bosqued, G. Parks, L. Kistler, M. McCarthy, B. Klecker, A. Korth, M. Bavassano-Cattaneo, R. Lundin, and A. Balogh: 2004, ‘Bow shock specularly reflected ions in the presence of lowfrequency electromagnetic waves: A case study’. Annales Geophysicae 22, 2325–2335.

    ADS  Google Scholar 

  • Möbius, E., H. Kucharek, C. Mouikis, E. Geogescu, L. M. Kistler, M. A. Popecki, M. Scholer, J. M. Bosqued, H. Réme, C. W. Carlson, B. Klecker, A. Korth, G. K. Parks, J. C. Sauvand, H. Balsiger, M.-B. Bavassano-Cattaneu, I. Dandouras, A. M. DiLellis, L. Eliasson, V. Formisano, T. Hobury, W. Lennartson, R. Lundin, M. McCarthy, J. McFadden, and G. Paschmann: 2001, ‘Observation of the spatial and temporal structure of field-aligned beam and gyrating ring distributions at the quasi-perpendicular bow shock with Cluster CIS’. Ann. Geophys. 19, 1411.

    Article  ADS  Google Scholar 

  • Morse, D. L.: 1976, ‘A model for ion thermalization in the Earth's bow shock’. J. Geophys. Res. 81(10), 6126–6130.

    Article  ADS  Google Scholar 

  • Morse, D. L., W. W. Destler, and P. L. Auer: 1972, ‘Nonstationary behavior of collisionless shocks’. Physical Review Letters 28, 13–16.

    Article  ADS  Google Scholar 

  • Newbury, J. A. and C. T. Russell: 1996, ‘Observations of a very thin collisionless shock’. Geophys. Res. Lett. 23, 781.

    Article  ADS  Google Scholar 

  • Papadopoulos, K.: 1985, ‘Microinstabilities and anomalous transport’. Washington DC American Geophysical Union Geophysical Monograph Series 34, 59–90.

    ADS  Google Scholar 

  • Paschmann, G., N. Sckopke, I. Papamastorakis, J. R. Asbridge, S. J. Bame, and J. T. Gosling: 1981, ‘Characteristics of reflected and diffuse ions upstream from the earth's bow shock’. J. Geophys. Res. 86(15), 4355–4364.

    Article  ADS  Google Scholar 

  • Paschmann, G. and P. W. Daly (eds.): 1998, Analysis methods for multi-spacecraft data, ISSI Sci. Rep. SR-001. Bern: ISSI. Paschmann, G., N. Sckopke, S. J. Bame, and J. Gosling: 1982, ‘Observations of gyrating ions in the foot of the nearly perpendicular bow shock’. Geophys. Res. Lett. 9, 881.

    Google Scholar 

  • Paschmann, G., N. Sckopke, I. Papamastorakis, J. Asbridge, S. Bame, and J. Gosling: 1980, ‘Energetization of solar wind ions by reflection from the Earth's bow shock’. J. Geophys. Res. 85, 4689.

    Article  ADS  Google Scholar 

  • Peredo, M., J. A. Slavin, E. Mazur, and S. A. Curtis: 1995, ‘Three-dimensional position and shape of the bow shock and their variation with Alfvenic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation’. J. Geophys. Res. 100(9), 7907–7916.

    Article  ADS  Google Scholar 

  • Quest, K. B.: 1985, ‘Simulations of high-Mach-number collisionless perpendicular shocks in astrophysical plasmas’. Physical Review Letters 54, 1872–1874.

    Article  ADS  Google Scholar 

  • Quest, K. B.: 1986, ‘Simulations of high Mach number perpendicular shocks with resistive electrons’. J. Geophys. Res. 91(10), 8805–8815.

    Article  ADS  Google Scholar 

  • Russell, C. T. and E. W. Greenstadt: 1979, ‘Initial ISEE magnetometer results - Shock observation’. Space Science Reviews 23, 3–37.

    Article  ADS  Google Scholar 

  • Saxena, R., S. D. Bale, and T. S. Horbury: 2004, ‘Wavelength and decay length of density overshoot structure at supercritical, collisionless bow shocks’. Phys. of Plasmasp. submitted.

  • Scholer, M., H. Kucharek, and J. Giacalone: 2000, ‘Cross-field diffusion of charged particles and the problem of ion injection and acceleration at quasi-perpendicular shocks’. J. Geophys. Res. 105, 18285.

    Article  ADS  Google Scholar 

  • Scholer, M., I. Shinohara, and S. Matsukiyo: 2003, ‘Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing’. J. Geophys. Res. 108, 1014, doi:10.1029/2002JA009515.

  • Schwartz, S. J.: 1998, ‘Shock and discontinuity normals, Mach numbers, and related parameters’. In: G. Paschmann and P. W. Daly (eds.): Analysis methods for multi-spacecraft data, ISSI Sci. Rep. SR-001. Bern: ISSI, pp. 249–270.

  • Schwartz, S. J. and D. Burgess: 1984, ‘On the theoretical/observational comparison of field-aligned ion beams in the Earth's foreshock’. J. Geophys. Res. 89, 2381 – 2384.

    Article  ADS  Google Scholar 

  • Schwartz, S. J., M. F. Thomsen, and J. Gosling: 1983, ‘Ions upstream of the earth's bow shock: A theoretical comparison of alternative source populations’. J. Geophys. Res. 88, 2039–2047.

    Article  ADS  Google Scholar 

  • Sckopke, N., G. Paschmann, S. J. Bame, J. T. Gosling, and C. T. Russell: 1983, ‘Evolution of ion distributions across the nearly perpendicular bow shock - Specularly and non-specularly reflectedgyrating ions’. J. Geophys. Res. 88(17), 6121–6136.

    Article  ADS  Google Scholar 

  • Sckopke, N., G. Paschmann, A. L. Brinca, C. W. Carlson, and H. L¨hr: 1990, ‘Ion thermalization in quasi-perpendicular shocks involving reflected ions’. J. Geophys. Res. 95, 6337.

    Article  ADS  Google Scholar 

  • Scudder, J. D.: 1995, ‘A Review of the Physics of Electron Heating at Collisionless shocks’. Adv. Space. Res. 15, 181.

    Article  ADS  Google Scholar 

  • Scudder, J. D., T. L. Aggson, A. Mangeney, C. Lacombe, and C. C. Harvey: 1986, ‘The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. II - Dissipative fluid electrodynamics’. J. Geophys. Res. 91(10), 11053–11073.

    Article  ADS  Google Scholar 

  • Sibeck, D. G., R. E. Lopez, and E. C. Roelof: 1991, ‘Solar wind control of the magnetopause shape, location, and motion’. J. Geophys. Res. 96(15), 5489–5495.

    Article  ADS  Google Scholar 

  • Sonnerup, B. U. Ö.: 1969, ‘Acceleration of particles reflected at a shock front’. J. Geophys. Res. 74, 1301.

    Article  ADS  Google Scholar 

  • Spreiter, J. R., A. L. Summers, and A. Y. Alksne: 1966, ‘Hydromagnetic flow around the magnetosphere’. Planet. Space Sci. 14, 223–223.

    Article  ADS  Google Scholar 

  • Tanaka, M., C. C. Goodrich, D.Winske, and K. Papadopoulos: 1983, ‘A Source of the backstreaming ion beams in the foreshock region’. J. Geophys. Res. 88, 3046.

    Article  ADS  Google Scholar 

  • Terasawa, T.: 1979, ‘Energy spectrum and pitch angle distribution of particles reflected by MHD shock waves of the fast mode’. Planet. Space Sci. 27, 193.

    Article  ADS  Google Scholar 

  • Thomsen, M.: 1985, ‘Upstream suprathermal ions’. In: B. Tsurutani and R. Stone (eds.): Collisionless Shocks in the Heliosphere: Reviews of current research, Geophys. Monogr. Ser. vol 35. Washington, D.C.: American Geophysical Union, pp. 253–270.

  • Thomsen, M. F., J. T. Gosling, S. J. Bame, W. C. Feldman, G. Paschmann, and N. Sckopke: 1983a, ‘Field-aligned beams upstream of the Earth's bow shock: Evidence for a magnetosheath source’. Geophys. Res. Lett. 10, 1207–1210.

  • Thomsen, M. F., S. J. Schwartz, and J. T. Gosling: 1983b, ‘Observational evidence on the origin of ions upstream of the earth's bow shock’. J. Geophys. Res. 88, 7843–7852.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T. and R. G. Stone: 1985, ‘Collisionless shocks in the heliosphere: Reviews of current research’. Washington DC American Geophysical Union Geophysical Monograph Series 35.

  • Vaisberg, O., S. Klimov, G. Zastenker, M. Nozdrachev, A. Sokolov, V. Smirnov, S. Savin, and L. Avanov: 1984, ‘Relaxation of plasma at the shock front’. Adv. Space. Res. 4, 265–275.

    Article  ADS  Google Scholar 

  • Vaisberg, O., G. Zastenker, V. Smirnov, Z. Nemecek, and J. Safrankova: 1986a, ‘Ion distribution function dynamics near the strong shock front (Project Intershock)’. Advances in Space Research 6, 41–44.

    Article  ADS  Google Scholar 

  • Vaisberg, O. L., G. N. Zastenker, V. N. Smirnov, Z. Nemechek, and I. Shafrankova: 1986b, ‘Dynamics of the ion distribution function near the Earth's bow shock (May 11, 1985)’. Cosmological Research 24, 166–176.

    ADS  Google Scholar 

  • Walker, S., H. Alleyne, M. Balikhin, M. Andre, and T. Horbury: 2004, ‘Electric field scales at quasiperpendicular shocks’. Annales Geophys. 22, 2291–2300.

    ADS  Google Scholar 

  • Walker, S. N., M. A. Balikhin, H. S. K. Alleyne, W. Baumjohann, and M. Dunlop: 1999, ‘Observations of a very thin shock’. Adv. Space. Res. 24, 47–50.

    Article  ADS  Google Scholar 

  • Wygant, J. R., M. Bensadoun, and F. S. Mozer: 1987, ‘Electric field measurements at subcritical, oblique bow shock crossings’. J. Geophys. Res. 92, 11109.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bale, S.D., Balikhin, M.A., Horbury, T.S. et al. Quasi-perpendicular Shock Structure and Processes. Space Sci Rev 118, 161–203 (2005). https://doi.org/10.1007/s11214-005-3827-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-005-3827-0

Keywords

Navigation