Skip to main content

Advertisement

Log in

Performance of Major Flare Watches from the Max Millennium Program (2001 – 2010)

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The physical processes that trigger solar flares are not well understood, and significant debate remains around processes governing particle acceleration, energy partition, and particle and energy transport. Observations at high resolution in energy, time, and space are required in multiple energy ranges over the whole course of many flares to build an understanding of these processes. Obtaining high-quality, co-temporal data from ground- and space- based instruments is crucial to achieving this goal and was the primary motivation for starting the Max Millennium program and Major Flare Watch (MFW) alerts, aimed at coordinating observations of all flares ≥ X1 GOES X-ray classification (including those partially occulted by the limb). We present a review of the performance of MFWs from 1 February 2001 to 31 May 2010, inclusive, which finds that (1) 220 MFWs were issued in 3407 days considered (6.5 % duty cycle), with these occurring in 32 uninterrupted periods that typically last 2 – 8 days; (2) 56% of flares ≥ X1 were caught, occurring in 19 % of MFW days; (3) MFW periods ended at suitable times, but substantial gain could have been achieved in percentage of flares caught if periods had started 24 h earlier; (4) MFWs successfully forecast X-class flares with a true skill statistic (TSS) verification metric score of 0.500, that is comparable to a categorical flare/no-flare interpretation of the NOAA Space Weather Prediction Centre probabilistic forecasts (TSS = 0.488).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Notes

  1. http://solar.physics.montana.edu/max_millennium/ops/observing.shtml .

  2. See http://solar.physics.montana.edu/max_millennium/ops/op003/op003.html for the currently operating MFW criteria.

  3. Despite being sent, the MMCO email for 21 August 2002 is missing from the archive located here http://solar.physics.montana.edu/hypermail/mmmotd/index.html . This day was treated as having a MFW called on the same target region as the MFW days preceding and following (NOAA 10069), with an issue time of 13:00 UTC (roughly the same as the previous day).

References

  • Aschwanden, M.J., Freeland, S.L.: 2012, Automated solar flare statistics in soft X-rays over 37 years of GOES observations: The invariance of self-organized criticality during three solar cycles. Astrophys. J. 754, 112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Atwood, W.B., Abdo, A.A., Ackermann, M., Althouse, W., Anderson, B., Axelsson, M., et al.: 2009, The Large Area Telescope on the Fermi gamma-ray space telescope mission. Astrophys. J. 697, 1071. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2012, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, L41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798, 135. DOI . ADS .

    Article  ADS  Google Scholar 

  • Colak, T., Qahwaji, R.: 2009, Automated solar activity prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7, 6001. DOI . ADS .

    Article  ADS  Google Scholar 

  • Crown, M.D.: 2012, Validation of the NOAA space weather prediction center’s solar flare forecasting look-up table and forecaster-issued probabilities. Space Weather 10, 6006. DOI . ADS .

    Article  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Gary, G.A.: 2008, Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J. 689, 1433. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Moon, Y.-J., Wang, H.: 2002, Active-region monitoring and flare forecasting I. Data processing and first results. Solar Phys. 209, 171. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661, L109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of sun-spots. Astrophys. J. 49, 153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hanssen, A.W., Kuipers, W.J.A.: 1965, On the relationship between the frequency of rain and various meteorological parameters. Meded. Ver. 81. Royal Netherlands Meteorological Institute.

  • Heidke, P.: 1926, Berechnung des Erfolges und der Güte der Windstärkevorhersagen im Sturmwarnungsdienst. Geogr. Ann. 8, 310.

    MATH  Google Scholar 

  • Hudson, H.S., Fisher, G.H., Welsch, B.T.: 2008, Flare energy and magnetic field variations. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, ASP Conf. Ser. 383, 221. ADS .

    Google Scholar 

  • Hudson, H.S., Peterson, L.E., Schwartz, D.A.: 1969, The hard solar X-ray spectrum observed from the third orbiting solar observatory. Astrophys. J. 157, 389. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kazachenko, M.D., Fisher, G.H., Welsch, B.T.: 2014, A comprehensive method of estimating electric fields from vector magnetic field and Doppler measurements. Astrophys. J. 795, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kretzschmar, M.: 2011, The sun as a star: Observations of white-light flares. Astron. Astrophys. 530, A84. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Krucker, S., Giménez de Castro, C.G., Hudson, H.S., Trottet, G., Bastian, T.S., Hales, A.S., et al.: 2013, Solar flares at submillimeter wavelengths. Astron. Astrophys. Rev. 21, 58. DOI . ADS .

    Article  ADS  Google Scholar 

  • Künzel, H.: 1960, Die Flare-Häufigkeit in Fleckengruppen unterschiedlicher Klasse und magnetischer Struktur. Astron. Nachr. 285, 271. ADS .

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • MacTaggart, D.: 2011, Flux emergence within mature solar active regions. Astron. Astrophys. 531, A108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mason, J.P., Hoeksema, J.T.: 2010, Testing automated solar flare forecasting with 13 years of Michelson Doppler Imager magnetograms. Astrophys. J. 723, 634. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Murray, S.A., Bloomfield, D.S., Gallagher, P.T.: 2012, The evolution of sunspot magnetic fields associated with a solar flare. Solar Phys. 277, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sawyer, C., Warwick, J.W., Dennett, J.T.: 1986, Solar Flare Prediction, Colorado Associated University Press, Boulder, CO. ADS .

  • Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L., Title, A.M., Metcalf, T.R.: 2005, The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628, 501. DOI . ADS .

    Article  ADS  Google Scholar 

  • Song, H., Tan, C., Jing, J., Wang, H., Yurchyshyn, V., Abramenko, V.: 2009, Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Solar Phys. 254, 101. DOI . ADS .

    Article  ADS  Google Scholar 

  • White, S.M., Benz, A.O., Christe, S., Fárník, F., Kundu, M.R., Mann, G., et al.: 2011, The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zirin, H., Marquette, W.: 1991, BEARALERTS – a successful flare prediction system. Solar Phys. 131, 149. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the excellent efforts of both our newest MMCO (Ying Li) and past MMCOs who have contributed since 2001 (in alphabetical surname order: Paul A. Higgins, R.T. James McAteer, and Claire L. Raftery), Keiji Yoshimura for maintaining the Max Millennium website, and the referee for useful comments that helped improve the manuscript. The Max Millennium program has been supported by the enlightened RHESSI PI team led by Principle Investigator Robert P. Lin (later Säm Krucker) and Project Scientist Brian R. Dennis through Sub-agreement No. SA-1868 26308PG between University of California, Berkeley and Montana State University. DSB received funding from the European Space Agency PRODEX Programme and the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 640216 (FLARECAST project). ROM received funding from NASA LWS/TR&T grant NNX11AQ53G and NASA LWS/SDO Data Analysis grant NNX14AE07G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Bloomfield.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloomfield, D.S., Gallagher, P.T., Marquette, W.H. et al. Performance of Major Flare Watches from the Max Millennium Program (2001 – 2010). Sol Phys 291, 411–427 (2016). https://doi.org/10.1007/s11207-015-0833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0833-6

Keywords

Navigation