Skip to main content
Log in

Comparison of Solar Wind Speeds Using Wavelet Transform and Fourier Analysis in IPS Data

  • Radio Heliophysics: Science and Forecasting
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The power spectra of intensity fluctuations in interplanetary scintillation (IPS) observations can be used to estimate solar-wind speeds in the inner heliosphere. We obtain and then compare IPS spectra from both wavelet and Fourier analyses for 12 time series of the radio source 3C48; these observations were carried out at Japan’s Solar-Terrestrial Environment Laboratory (STEL) facility, at 327 MHz. We show that wavelet and Fourier analyses yield very similar power spectra. Thus, when fitting a model to spectra to determine solar-wind speeds, both yield comparable results. Although spectra from wavelet and Fourier closely match each other for solar-wind speed purposes, those from the wavelet analysis are slightly cleaner, which is reflected in an apparent level of intensity fluctuations that is enhanced, being ≈ 13 % higher. This is potentially useful for records that show a low signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aguilar-Rodriguez, E., Rodriguez-Martinez, M., Romero-Hernandez, E., Mejia-Ambriz, J.C., Gonzalez-Esparza, J.A., Tokumaru, M.: 2014, The wavelet transform function to analyze interplanetary scintillation observations. Geophys. Res. Lett. 41, 3331. DOI .

    Article  ADS  Google Scholar 

  • Asai, K., Kojima, M., Tokumaru, M., Yokobe, A., Jackson, B.V., Hick, P.L., Manoharan, P.K.: 1998, Heliospheric tomography using interplanetary scintillation observations: 3. Correlation between speed and electron density fluctuations in the solar wind. J. Geophys. Res. 103, 1991. DOI .

    Article  ADS  Google Scholar 

  • Balasubramanian, V., Janardhan, P., Srinivasan, S., Ananthakrishnan, S.: 2003, Interplanetary scintillation observations of the solar wind disappearance event of May 1999. J. Geophys. Res. 108, 1121. DOI .

    Article  Google Scholar 

  • Chashei, I.V., Efimov, A.I., Rudash, V.K., Bird, M.K.: 2000, Anisotropy and velocity of small-scale irregularities in the region of solar-wind acceleration. Astron. Rep. 44, 634. DOI .

    Article  ADS  Google Scholar 

  • Chashei, I.V., Shishov, V.I., Tyul’bashev, S.A., Subaev, I.A., Oreshko, V.V.: 2013, Results of IPS observations in the period near solar activity minimum. Solar Phys. 285, 141. DOI .

    Article  ADS  Google Scholar 

  • Coles, W.A., Harmon, J.K.: 1978, Interplanetary scintillation measurements of electron density power spectrum in the solar wind. J. Geophys. Res. 83, 1413. DOI .

    Article  ADS  Google Scholar 

  • De Moortel, I., Munday, S.A., Hood, A.W.: 2014, Wavelet analysis: the effect of varying basic wavelet parameters. Solar Phys. 222, 203. DOI .

    Article  Google Scholar 

  • Fallows, R.A., Williams, P.J.S., Breen, A.R.: 2002, EISCAT measurements of solar wind velocity and the associated level of interplanetary scintillation. Ann. Geophys. 20, 1279. DOI .

    Article  ADS  Google Scholar 

  • Farge, M.: 1992, Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395. DOI .

    Article  MathSciNet  ADS  Google Scholar 

  • Gapper, G.R., Hewish, A.: 1981, Density gradients in the solar plasma observed by interplanetary scintillation. Mon. Not. Roy. Astron. Soc. 197, 209. DOI .

    Article  ADS  Google Scholar 

  • Gapper, G.R., Hewish, A., Purvis, A., Duffet-Smith, P.J.: 1982, Observing interplanetary disturbances from the ground. Nature 296, 633. DOI .

    Article  ADS  Google Scholar 

  • Glubokova, S.K., Chasei, I.V., Tyul’bashev, S.A.: 2012, Small-scale solar wind density turbulence spectrum from interplanetary scintillation observations. Adv. Astron. Space Phys. 2, 164. DOI .

    ADS  Google Scholar 

  • Gonzalez-Esparza, J.A., Carrillo, A., Andrade, E., Perez-Enriquez, R., Kurtz, S.: 2004, The MEXART interplanetary scintillation array in Mexico. Geophys. Int. 43, 61.

    Google Scholar 

  • Manoharan, A.P.: 2012, Three-dimensional evolution of solar wind during solar cycles 22–24. Astrophys. J. 751, 128. DOI .

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 1993, Three-dimensional structure of the solar wind: variation of density with the solar cycle. Solar Phys. 148, 153. DOI .

    Article  ADS  Google Scholar 

  • Manoharan, P.K., Ananthakrishnan, S.: 1990, Determination of solar-wind velocities using single-station measurements of interplanetary scintillation. Mon. Not. Roy. Astron. Soc. 244, 691.

    ADS  Google Scholar 

  • Manoharan, P.K., Kojima, M., Gopalswamy, N., Kondo, T., Smith, Z.: 2000, Radial evolution and turbulence characteristics of a coronal mass ejection. Astrophys. J. 530, 1061. DOI .

    Article  ADS  Google Scholar 

  • Manoharan, P.K., Kojima, M., Misawa, H.: 1994, The spectrum of electron density fluctuations in the solar wind and its variations with solar wind speed. J. Geophys. Res. 99, 23411. DOI .

    Article  ADS  Google Scholar 

  • Mejia-Ambriz, J.C., Jackson, B.V., Gonzalez-Esparza, J.A., Buffington, A., Tokumaru, M., Aguilar-Rodriguez, E.: 2015, Remote-sensing of solar wind speeds from IPS observations at 140 and 327 MHz using MEXART and STEL. Solar Phys. DOI .

  • Mejia-Ambriz, J.C., Villanueva-Hernandez, P., Gonzalez-Esparza, J.A., Aguilar-Rodriguez, E., Jeyakumar, S.: 2010, Observations of Interplanetary Scintillation (IPS) using the Mexican Array Radio Telescope (MEXART). Solar Phys. 265, 209. DOI .

    Article  Google Scholar 

  • Moran, P.J., Ananthakrishnan, S., Balasubramanian, V., Breen, A.R., Canals, A., Fallows, R.A., Janhardan, P., Tokumaru, M., Williams, P.J.S.: 2000, Observations of interplanetary scintillation during the 1998 whole Sun month: a comparison between EISCAT, ORT and Nagoya data. Ann. Geophys. 18, 1003. DOI .

    Article  ADS  Google Scholar 

  • Sajan, C., Mushini, P.T., Jayachandran, R.B., Langley, J.W., MacDougall, J.W., Pokhotelov, D.: 2012, Improved amplitude and phase-scintillation indices derived from wavelet detrended high latitude GPS data. GPS Solut. 16, 363. DOI .

    Article  Google Scholar 

  • Scott, S.L., Coles, W.A., Bourgois, G.: 1983, Solar wind observations near the sun using interplanetary scintillation. Astron. Astrophys. 123, 207.

    ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K.: 2012, Long-term evolution in the global distribution of solar wind speed and density fluctuations during 1997–2009. J. Geophys. Res. 117, A06108. DOI .

    ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Maruyama, K., Maruyama, Y., Ito, H., Iju, T.: 2011, A newly developed UHF radiotelescope for interplanetary scintillation observations: solar wind imaging facility. Radio Sci. 46, RS0F02. DOI .

    Article  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61.

    Article  ADS  Google Scholar 

  • van Haarlem, M.P., Wise, M.W., Gunst, A.W., Heald, G., McKean, J.P., Hessels, J.W.T., de Bruyn, A.G., Nijboer, R., Swinbank, J., Fallows, R., et al.: 2013, LOFAR: the LOw-frequency ARray. Astron. Astrophys. 556, 53. DOI .

    Article  Google Scholar 

  • Wannberg, G., Wolf, I., Vanhainen, L.G., Koskenniemi, K., Rottger, J., Postila, M., Markkanen, J., Jacobsen, R., Stenberg, A., Larsen, R., Eliassen, S., Heck, S., Huuskonen, A.: 1997, The EISCAT Svalbard radar: a case study in modern incoherent scatter radar system design. Radio Sci. 32, 2283. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The STEL IPS observations were carried out under the solar-wind program of the Solar-Terrestrial Environment Laboratory (STEL) of Nagoya University. Wavelet software was provided by C. Torrence and G. Compo, and is available at URL: http://atoc.colorado.edu/research/wavelets/ . E. Aguilar-Rodriguez acknowledges the DGAPA/PAPIIT project (grant: IN103615) and the CONACyT project (grant: 220981), Ernesto Andrade-Mascote, and Pablo Villanueva-Hernandez. J.C. Mejia-Ambriz acknowledges the Cátedras CONACyT project 1045: Servicio de Clima Espacial México (SCiESMEX). B.V. Jackson and a portion of Mejia-Ambriz’s stay at UCSD have been funded by NSF contract AGS-1053766 to the University of California, San Diego. B.V. Jackson has also been supported by AFOSR contract FA9550-11-1-0324. J.A. Gonzalez-Esparza thanks for the DGAPA-PAPIIT grant IN109413 and CONACyT grant 152471. M. Rodriguez-Martinez acknowledges the DGAPA-PAPIIT project IA102514 and the CONACyT Infrastructure Grant: 253691. M. Tokumaru thanks the Japan Society for the Promotion of Science (JSPS) for financial support by a Grant-in-Aid for Scientific Research (A) No. 25247079. P.K. Manoharan acknowledges partial support by the CAWSES-India Program, sponsored by ISRO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Aguilar-Rodriguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Radio Heliophysics: Science and Forecasting

Guest Editors: Mario M. Bisi, Bernard V. Jackson, and J. Americo Gonzalez-Esparza

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Rodriguez, E., Mejia-Ambriz, J.C., Jackson, B.V. et al. Comparison of Solar Wind Speeds Using Wavelet Transform and Fourier Analysis in IPS Data. Sol Phys 290, 2507–2518 (2015). https://doi.org/10.1007/s11207-015-0758-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0758-0

Keywords

Navigation