Skip to main content
Log in

Effects of Stratification and Flows on P 1/P 2 Ratios and Anti-node Shifts Within Closed Loop Structures

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The solar atmosphere is a dynamic environment, constantly evolving to form a wide range of magnetically dominated structures (coronal loops, spicules, prominences, etc.) which cover a significant percentage of the surface at any one time. Oscillations and waves in many of these structures are now widely observed and have led to the new analytic technique of solar magneto-seismology, where inferences of the background conditions of the plasma can be deduced by studying magneto-hydrodynamic (MHD) waves. Here, we generalise a novel magneto-seismological method designed to infer the density distribution of a bounded plasma structure from the relationship of its fundamental and subsequent harmonics. Observations of the solar atmosphere have emphatically shown that stratification, leading to complex density profiles within plasma structures, is common thereby rendering this work instantly accessible to solar physics. We show, in a dynamic waveguide, how the period ratio differs from the idealised harmonic ratios prevalent in homogeneous structures. These ratios show strong agreement with recent observational work. Next, anti-node shifts are also analysed. Using typical scaling parameters for bulk flows within atmospheric waveguides, e.g., coronal loops, it is found that significant anti-node shifts can be predicted, even to the order of 10 Mm. It would be highly encouraged to design specific observations to confirm the predicted anti-node shifts and apply the developed theory of solar magneto-seismology to gain more accurate waveguide diagnostics of the solar atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Andries, J., Arregui, I., Goossens, M.: 2005, Determination of the coronal density stratification from the observation of harmonic coronal loop oscillations. Astrophys. J. Lett. 624, L57.

    Article  ADS  Google Scholar 

  • Andries, J., van Doorsselaere, T., Roberts, B., Verth, G., Verwichte, E., Erdélyi, R.: 2009, Coronal seismology by means of kink oscillation overtones. Space Sci. Rev. 149, 3.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the Transition Region and Coronal Explorer. Astrophys. J. 520, 880.

    Article  ADS  Google Scholar 

  • Bender, C.M., Orszag, S.A.: 1978, Advanced Mathematical Methods for Scientists and Engineers, McGraw Hill, New York, 484.

    MATH  Google Scholar 

  • Berghmans, D., Clette, F.: 1999, Active region EUV transient brightenings – First results by EIT of SOHO JOP80. Solar Phys. 186, 207.

    Article  ADS  Google Scholar 

  • Campos, L.M.B.C.: 1986, On umbral oscillations as a sunspot diagnostic. In: Gough, D.O., (ed.), Seismology of the Sun and the Distant, Stars, NATO ASI Series C 169, 293.

    Chapter  Google Scholar 

  • Campos, L.M.B.C.: 1987, On waves in gases. Part II: Interaction of sound with magnetic and internal modes. Rev. Mod. Phys. 59, 363.

    Article  MathSciNet  ADS  Google Scholar 

  • De Moortel, I.: 2009, Longitudinal waves in coronal loops. Space Sci. Rev. 149, 65.

    Article  ADS  Google Scholar 

  • De Moortel, I., Brady, C.S.: 2007, Observation of higher harmonic coronal loop oscillations. Astrophys. J. 664, 1210.

    Article  ADS  Google Scholar 

  • Deforest, C.E., Gurman, J.B.: 1998, Observation of quasi-periodic compressive waves in solar polar plumes. Astrophys. J. Lett. 501, L217.

    Article  ADS  Google Scholar 

  • Díaz, A.J., Oliver, R., Ballester, J.L.: 2010, Prominence thread seismology using the P1/2P2 ratio. Astrophys. J. 725, 1742.

    Article  ADS  Google Scholar 

  • Dymova, M.V., Ruderman, M.S.: 2005, Non-axisymmetric oscillations of thin prominence fibrils. Solar Phys. 229, 79.

    Article  ADS  Google Scholar 

  • Edwin, P.M., Roberts, B.: 1983, Wave propagation in a magnetic cylinder. Solar Phys. 88, 179.

    Article  ADS  Google Scholar 

  • Erdélyi, R.: 2006, In: Fletcher, K., Thompson, M., (eds.) Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the Spherical Sun SP-624, ESA, Noordwijk, 15.1. (on CDROM).

    Google Scholar 

  • Erdélyi, R., Taroyan, Y.: 2008, Hinode EUV spectroscopic observations of coronal oscillations. Astron. Astrophys. 489, L49.

    Article  ADS  Google Scholar 

  • Erdélyi, R., Verth, G.: 2007, The effect of density stratification on the amplitude profile of transversal coronal loop oscillations. Astron. Astrophys. 462, 743.

    Article  ADS  Google Scholar 

  • Ferraro, C.A., Plumpton, C.: 1958, Hydromagnetic waves in a horizontally stratified atmosphere. V. Astrophys. J. 127, 459.

    Article  MathSciNet  ADS  Google Scholar 

  • Jess, D.B., Mathioudakis, M., Erdélyi, R., Verth, G., McAteer, R.T.J., Keenan, F.P.: 2008, Discovery of spatial periodicities in a coronal loop using automated edge-tracking algorithms. Astrophys. J. 680, 1523.

    Article  ADS  Google Scholar 

  • Jess, D.B., Mathioudakis, M., Erdélyi, R., Crockett, P.J., Keenan, F.P., Christian, D.J.: 2009, Alfvén waves in the lower solar atmosphere. Science 323, 1582.

    Article  ADS  Google Scholar 

  • Kopp, R.A., Poletto, G., Noci, G., Bruner, M.: 1985, Analysis of loop flows observed on 27 March, 1980 by the UVSP instrument during the Solar Maximum Mission. Solar Phys. 98, 91.

    Article  ADS  Google Scholar 

  • Leroy, B., Bel, N.: 1979, Propagation of waves in an atmosphere in the presence of a magnetic field. I – The method. Astron. Astrophys. 78, 129.

    MathSciNet  ADS  Google Scholar 

  • Mathioudakis, M., Jess, D.B., Erdélyi, R.: 2012, Alfvén waves in the solar atmosphere. Space Sci. Rev., 94. doi: 10.1007/s11214-012-9944-7 .

  • Morton, R.J., Erdélyi, R.: 2009, Transverse oscillations of a cooling coronal loop. Astrophys. J. 707, 750.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L.: 2001, Determination of the coronal magnetic field by coronal loop oscillations. Astron. Astrophys. 372, L53.

    Article  ADS  Google Scholar 

  • Ofman, L., Wang, T.J.: 2008, Hinode observations of transverse waves with flows in coronal loops. Astron. Astrophys. 482, L9.

    Article  ADS  Google Scholar 

  • O’Shea, E., Srivastava, A.K., Doyle, J.G., Banerjee, D.: 2007, Evidence for wave harmonics in cool loops. Astron. Astrophys. 473, L13.

    Article  ADS  Google Scholar 

  • Roberts, B.: 2000, Waves and oscillations in the corona (invited review). Solar Phys. 193, 139.

    Article  ADS  Google Scholar 

  • Roberts, B., Edwin, P.M., Benz, A.O.: 1984, On coronal oscillations. Astrophys. J. 279, 857.

    Article  ADS  Google Scholar 

  • Rosenberg, H.: 1970, Evidence for MHD pulsations in the solar corona. Astron. Astrophys. 9, 159.

    ADS  Google Scholar 

  • Ruderman, M.S.: 2010, The effect of flows on transverse oscillations of coronal loops. Solar Phys. 267, 377.

    Article  ADS  Google Scholar 

  • Ruderman, M.S., Erdélyi, R.: 2009, Transverse oscillations of coronal loops. Space Sci. Rev. 149, 199.

    Article  ADS  Google Scholar 

  • Soler, R., Goossens, M.: 2011, Kink oscillations of flowing threads in solar prominences. Astron. Astrophys. 531, A167.

    Article  ADS  Google Scholar 

  • Soler, R., Ruderman, M.S., Goossens, M.: 2012, Damped kink oscillations of flowing prominence threads. Astron. Astrophys. 546, A82.

    Article  ADS  Google Scholar 

  • Srivastava, A.K., Zaqarashvili, T.V., Uddin, W., Dwivedi, B.N., Kumar, P.: 2008, Observation of multiple sausage oscillations in cool post-flare loop. Mon. Not. Roy. Astron. Soc. 388, 1899.

    Article  ADS  Google Scholar 

  • Taroyan, Y., Erdélyi, R.: 2009, Heating diagnostics with MHD waves. Space Sci. Rev. 149, 229.

    Article  ADS  Google Scholar 

  • Uchida, Y.: 1970, Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publ. Astron. Soc. Japan 22, 341.

    ADS  Google Scholar 

  • Van Doorsselaere, T., Nakariakov, V.M., Verwichte, E.: 2007, Coronal loop seismology using multiple transverse loop oscillation harmonics. Astron. Astrophys. 473, 959.

    Article  ADS  Google Scholar 

  • Verth, G., Erdélyi, R.: 2008, Effect of longitudinal magnetic and density inhomogeneity on transversal coronal loop oscillations. Astron. Astrophys. 486, 1015.

    Article  ADS  MATH  Google Scholar 

  • Verth, G., Erdélyi, R., Jess, D.B.: 2008, Refined magnetoseismological technique for the solar corona. Astrophys. J. Lett. 687, L45.

    Article  ADS  Google Scholar 

  • Verth, G., Van Doorsselaere, T., Erdélyi, R., Goossens, M.: 2007, Spatial magneto-seismology: Effect of density stratification on the first harmonic amplitude profile of transversal coronal loop oscillations. Astron. Astrophys. 475, 341.

    Article  ADS  Google Scholar 

  • Verwichte, E., Nakariakov, V.M., Ofman, L., Deluca, E.E.: 2004, Characteristics of transverse oscillations in a coronal loop arcade. Solar Phys. 223, 77.

    Article  ADS  Google Scholar 

  • Wang, T.: 2011, Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397.

    Article  ADS  Google Scholar 

  • Zhugzhda, Y.D.: 1984, Resonance oscillations in sunspots. Sov. Astron. Lett. 10, 19.

    ADS  Google Scholar 

Download references

Acknowledgements

We first thank M.S. Ruderman for many excellent discussions and thoughts which improved this manuscript. We thank the Science and Technology Facilities Council (UK) and the School of Mathematics and Statistics, University of Sheffield (UK) for the support received. RE is thankful to the NSF, Hungary (OTKA, Ref. No. K83133) and acknowledges M. Kéray for patient encouragement. Research at the Armagh Observatory is grant-aided by the N. Ireland Dept. of Culture, Arts and Leisure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdélyi, R., Hague, A. & Nelson, C.J. Effects of Stratification and Flows on P 1/P 2 Ratios and Anti-node Shifts Within Closed Loop Structures. Sol Phys 289, 167–182 (2014). https://doi.org/10.1007/s11207-013-0344-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0344-2

Keywords

Navigation