Skip to main content
Log in

A Mechanism for the Local Production of Faculae

  • Published:
Solar Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2006

Abstract

We offer a new viewpoint that can explain some of the recently obtained high-resolution observations of granules and faculae. Examining the data of Scharmer, Gudiksen, Kiselman et al. (2002) we observe many granules undergo an evolution that results in faculae emerging from within their boundaries, and moving towards and into intergranular lanes. These faculae have a characteristic hairpin substructure. The evolving morphology can be closely described by a fluid dynamic instability we call the “vortex/shear layer” (VSL) interaction. It occurs in all granules whose underlying structure has vorticity when they emerge into the photosphere through the sub-photospheric turbulent boundary layer (SPTBL). The VSL results in the creation of vortices from the distributed vorticity of the SPTBL. The subsequent stretching of these vortices results in high amplification of vorticity, and the concurrent high amplification of the background magnetic field. Magnetic field lines spiral around the vortices, as well as being stretched along their axis. Thus, the VSL is also the origin of a coherent local dynamo. The spiral sheathing of high magnetic flux results in a simple explanation for the “hot wall” effect. The VSL also creates the “dark lanes” observed by Lites, Scharmer, Berger et al. (2004) and groupings of bright hairpins/vortex sheet ensembles, which look like the ribbon faculae (Berger, Rouppe van der Voort, Lofdahl et al., 2004). The SPTBL results in emerging tilted granules, which when combined with the VSL create the three-dimensionality which Lites, Scharmer, Berger et al. (2004), also observed. Both the VSL and the SPTBL result, on average, in a west side bias of hairpin faculae and granular three-dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arendt, S.: 1994, Astrophys. J. 422, 862.

    Article  ADS  Google Scholar 

  • Berger, T.E., Rouppe van der Voort, L.H.M., Lofdahl, M.G., Carlsson M., Fossum, A., Hansteen, V.H., Marthinussen, E., Title, A., and Scharmer, G.: 2004, Astron. Astrophys. 428, 613.

    Article  ADS  Google Scholar 

  • Carlsson, M., Stein, R.F., Nordlund, A., and Scharmer, G.: 2004, Astrophys. J. 610, L137.

    Article  ADS  Google Scholar 

  • Chang, T.Y., Hertzberg, J.R., and Kerr, R.M.: 1997, Phys. Fluids 9, 57.

    Article  ADS  Google Scholar 

  • Chu, C.C. and Falco, R.E.: 1988. Exp. Fluids 6, 305.

    Article  Google Scholar 

  • Cloutman, L.D.: 1979, Astrophys. J. 227, 614.

    Article  ADS  Google Scholar 

  • Cloutman, L.D.: 1980, Space Sci. Rev. 27, 293.

    Article  ADS  Google Scholar 

  • Crook, A., Crowther, W.J., and Wood, N.J.: 2000, 22nd International Congress of Aeronautical Sciences, ICAS, Harrogate, UK, p. 1 – 7.

  • Dunn, R.B. and Zirker, J.B.: 1973, Solar Phys. 33, 281.

    ADS  Google Scholar 

  • Falco, R.E.: 1991, Phil. Trans. R. Soc. Lond. A, 336, 13.

  • Harvey, K.L. and Harvey, J.: 1973, Solar Phys. 28, 61.

    Article  ADS  Google Scholar 

  • Hill, F.: 1988, Astrophys. J. 333, 996.

    Article  ADS  Google Scholar 

  • Jones, T.W., Gaalaas, J.B., Ryu, D., and Frank, A.: 1997, Astrophys. J. 482, 230.

    Article  ADS  Google Scholar 

  • Keller, C.U.: 1993, ASP Conf. Series 46, 3.

  • Keller, C.U.: 2001, ASP Conf. Series 236, 389.

  • Laing, S.Y.: 1984, Vortex Ring/Moving Wall Interactions. M.S. thesis, Department of Mechanical Engineering, Michigan State University.

  • Lighthill, M.J.: 1963, in Rosenhead, L (ed.), Laminar Boundary Layers, Dover, New York.

    Google Scholar 

  • Lites, B.W., Scharmer, G.B., Berger, T.E., and Title, A.M.: 2004, Solar Phys. 221, 65.

    Article  ADS  Google Scholar 

  • Marcus, D.L. and Bell, J.: 1992, Theor. Comp. Fluid Dyn. 3, 327.

    Article  MATH  Google Scholar 

  • Maxworthy, T.: 1974, J. Fluid Mech. 64, 227.

    Article  MATH  ADS  Google Scholar 

  • Muller, R., Roudier T., Vigneau J., and Auffret H.: 1994, Astron. Astrophys. 283, 232.

    ADS  Google Scholar 

  • Parker, E.N.: 1982, Astrophys. J. 256, 292.

    Article  ADS  Google Scholar 

  • Patrón, J., González Hernández I., Chou D.-Y., and TON Team: 1997, Astrophys. J. 485, 869.

  • Patrón, J., González Hernández I., Chou D.-Y., and TON Team: 1998, Astrophys. J. 506, 450.

  • Priest, E.R.: 1982, Solar Magneto-hydrodynamics, Reidel, Holland, p. 82.

    Google Scholar 

  • Rast, M.P.: 1998, J. Fluid. Mech. 369, 125.

    MATH  MathSciNet  ADS  Google Scholar 

  • Rieutord, M., Ludwig, H.-G., Roudier, T., Nordlund, A., and Stein, R.: 2002, Il Nuovo Cimento C 25, 523.

    ADS  Google Scholar 

  • Rutten, R.J., Kiselman, D., Rouppe van der Voort, L.H.M., and Plez, B.: 2001, ASP 236, 445.

    ADS  Google Scholar 

  • Ryu, D., Jones, T.W., and Frank, A.: 2000, Astrophys. J. 545, 475.

    Article  ADS  Google Scholar 

  • Sanchez Almeida, J.: 2004, ASP Conf. Series, 325, 115.

  • Scharmer, G.B., Gudiksen, B.V., Kiselman, D., Löfdahl M.G., and Rouppe van der Voort L.H.M.: 2002, Nature 420, 151.

    Article  ADS  Google Scholar 

  • Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., Christensen-Dalsgaard, J., di Mauro, M.P., Dziembowski, W.A., Eff-Darwich, A., Gough, D.O., Haber, D.A., Hoeksema, J.T., Howe, R., Korzennik, S.G., Kosovichev, A.G., Larsen, R.M., Pijpers, F.P., Scherrer, P.H., Sekii, T., Tarbell, T.D., Title, A.M., Thompson, M.J., Toomre, J.: 1998, Astrophys. J. 505, 390.

    Article  ADS  Google Scholar 

  • Schou, J., Howe, R., Basu, S., Christensen-Dalsgaard, J., Corbard, T., Hill, F., Komm, R., et al.: 2002, Astrophys. J. 567, 1234.

    Article  ADS  Google Scholar 

  • Spruit, H.C.: 1976, Solar Phys. 50, 269.

    Article  ADS  Google Scholar 

  • Spruit, H.C., Title, A.M., and van Ballegooijen, A.A.: 1987 Solar Phys. 110, 115.

    Article  ADS  Google Scholar 

  • Stein, R.F. and Nordlund A.: 1998, Astrophys. J. 499, 914.

    Article  ADS  Google Scholar 

  • Turner, J.S.: 1957, Proc. R. Soc. Lond. A 239, 61.

  • Turner, J.S.: 1964, J. Fluid Mech. 19, 481.

    Article  MATH  ADS  Google Scholar 

  • Vogler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T., and Linde T.: 2005, Astron. Astrophys. 429, 335.

    Article  ADS  Google Scholar 

  • Walker, J.D.A., Smith, C.R., Cerra, A.W., and Doligalski, T.L.: 1987, J. Fluid Mech. 181, 99.

    Article  ADS  Google Scholar 

  • White, F.M.: 1979, Fluid Mechanics, McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Falco.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11207-006-9001-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falco, R.E. A Mechanism for the Local Production of Faculae. Sol Phys 234, 213–242 (2006). https://doi.org/10.1007/s11207-006-1445-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-006-1445-y

Keywords

Navigation