Skip to main content

Advertisement

Log in

Experimental measurements of seismic velocities on core samples and their dependence on mineralogy and stress; Witwatersrand Basin (South Africa)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Physical property measurements were integrated with mineralogical analyses to better understand the nature of the seismic reflectivity of the deepest (>3.5 km depth) gold ore body (Carbon Leader Reef). The CLR lies at depths between 3.5 km and 4.5 km below the surface. Over 50 drill-core samples were selected for geochemical analyses, density and seismic velocity measurements. Ultrasonic measurements were conducted at ambient and elevated stresses, using transducers operating at 0.5 MHz. The study reveals that P-wave velocities generally increase with increasing bulk density. The CLR conglomerate, the gold-bearing reef, has slightly higher P-wave velocity (∼5070–5468 m/s) and density values (∼2.78 g/cm3) amongst the quartzitic units, possibly due to its massive pyrite content. The quartzite hangingwall and footwall rocks to the CLR exhibit similar P-wave velocity (∼5028–5480 and ∼4777–5211 m/s, respectively) and density values (∼2.68 and 2.66 g/cm3, respectively). The reflection coefficients calculated at the interface between the CLR conglomerate and its hangingwall and footwall units range between ∼0.02 and 0.05 which is below the required minimum reflection coefficient value of 0.06 to produce a strong reflection between two lithological boundaries. This suggests that seismic reflection methods might not be able to directly image the CLR, as observed from its poor reflectivity in the 3D seismic data. Samples were also subjected to stresses of up to 65 MPa to simulate in situ-like conditions and to investigate the dependence of seismic velocities on applied stresses. P-wave velocities increase with progressive loading, but at different rates in shale and quartzite rocks as a result of the presence of micro-defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong R., Compston W., Retief E., Williams I. and Welke H., 1991. Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precambrian Res., 53, 243–266.

    Article  Google Scholar 

  • Barrett P.J. and Froggatt C.P., 2012. Densities, porosities, and seismic velocities of some rocks from Victoria Land, Antarctica. N. Z. J. Geol. Geophys., 21, 175–187.

    Article  Google Scholar 

  • Beach A. and Smith R., 2007. Structural geometry and development of the Witwatersrand Basin, South Africa. In: Ries A.C., Butler R.W.H. and Graham R.H. (Eds), Deformation of the Continental Crust: The Legacy of Mike Coward. Geol. Soc. London Spec. Pub., 272, 533–542.

    Google Scholar 

  • Best A.I., 1997. The effect of pressure on ultrasonic velocity and attenuation in near-surface sedimentary rocks. Geophys. Prospect., 45, 345–364.

    Article  Google Scholar 

  • Birch F., 1961. The velocity of compressional waves in rocks to 10 kilobars, Part 1. J. Geophys. Res., 65, 1083–1102.

    Article  Google Scholar 

  • Buck S.G. and Minter W.E.L., 2014. Placer formation by fluvial degradation of an alluvial fan sequence: the Proterozoic Carbon Leader placer, Witwatersrand Supergroup, South Africa. J. Geol. Soc., 142, 757–764.

    Article  Google Scholar 

  • Carlson R. and Miller J., 2004. Influence of pressure and mineralogy on seismic velocities in oceanic gabbros: Implications for the composition and state of the lower crust. J. Geophys. Res., 109, B09205.

    Article  Google Scholar 

  • Castagna J., Batzle M. and Eastwood R., 1985. Relationship between compressional - wave and shear - wave velocities in clastic silicate rocks. Geophysics, 50, 571–581.

    Article  Google Scholar 

  • Chang C., Zoback M. and Khaksar A., 2006. Empirical relations between rock strength and physical properties in sedimentary rocks. J. Pet. Sci. Eng., 51, 223–237.

    Article  Google Scholar 

  • Christensen N., 1965. Compressional wave velocities in metamorphic rocks at pressures to 10 kilobars. J. Geophys. Res., 70, 6147–6162.

    Article  Google Scholar 

  • Christensen N.I. and Mooney W.D., 1995. Seismic velocity structure and composition of the continental crust: A global view. J. Geophys. Res., 100, 9761–9788.

    Article  Google Scholar 

  • Coward M.P., Spencer R.M. and Spencer C.E., 1995. Development of the Witwatersrand Basin, South Africa. Geol. Soc. London Spec. Pub., 95, 243–269.

    Article  Google Scholar 

  • Dankert B.T. and Hein K.A., 2010. Evaluating the structural character and tectonic history of the Witwatersrand Basin. Precambrian Res., 177, 1–22.

    Article  Google Scholar 

  • De Kock W.P., 1964. The geology and economic significance of the West Wits Line. In: Haughton S.H. (Ed.), The Geology of Some Ore Deposits in Southern Africa. Volume 1. Geological Society of South Africa, Johannesburg, South Africa, 323–386.

    Google Scholar 

  • Dobróka M. and Molnár J., 2012. New petrophysical model describing the pressure dependence of seismic velocities. Acta Geophys., 60, 371–383.

    Article  Google Scholar 

  • Elbra T., Karlqvist R., Lassila I., Hæggström E. and Pesonen L., 2011. Laboratory measurements of the seismic velocities and other petrophysical properties of the Outokumpa deep drill core samples, eastern Finland. Geophys. J. Int., 184, 405–415.

    Article  Google Scholar 

  • Engelbrecht C.J., Baumbach G.W., Matthysen J. and Fletcher P., 1986. The West Wits Line. In: Anhaeusser C.A. and Maske S. (Eds), Mineral Deposits of Southern Africa. Volume 1. Geological Society of South Africa, Johannesburg, South Africa, 599–648.

    Google Scholar 

  • Frimmel H.E. and Gartz V.H., 1997. Witwatersrand gold particle chemistry matches model of metamorphosed, hydrothermally altered placer deposits. Miner. Dep., 32, 523–530.

    Article  Google Scholar 

  • Frimmel H.E. and Minter W.E.L., 2002. Recent developments concerning the geological history and genesis of the Witwatersrand gold deposits, South Africa. Soc. Econ. Geol. Spec. Pub., 9, 17–45.

    Google Scholar 

  • Frimmel H.E., Groves D.I., Kirk J., Ruiz J., Chesley J. and Minter, W.E., 2005. The formation and preservation of the Witwatersrand goldfields, the world’s largest gold province. In: Hedenquist J.F., Thompson J.F.H., Goldfarb R.J. and Richards J.P. (Eds), Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, CO, 769–717.

    Google Scholar 

  • Gibson M.A.S., Jolley S.J. and Barnicoat A.C., 2000. Interpretation of the Western Ultra Deep Levels 3D seismic survey. The Leading Edge, 19, 730–735.

    Article  Google Scholar 

  • Grové D. and Harris C., 2010. O- and H-isotope study of the Carbon Leader Reef at the Tau Tona and Savuka mines (Western Deep Levels), South Africa: Implications for the origin and evolution of Witwatersrand Basin fluids. S. Afr. J. Geol., 113, 1–14.

    Article  Google Scholar 

  • Guy B.M., Beukes N.J. and Gutzmer J., 2010. Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeritic sedimenatary rocks of the mesoarchaean Witwatersrand Supergroup, South Africa. S. Afr. J. Geol., 113, 195–228.

    Article  Google Scholar 

  • Hayward C.L., Reimold W.U., Gibson R.L. and Robb L.J., 2005. Gold mineralization within the Witwatersrand basin, South Africa: evidence for a modified placer origin, and the role of the Vredefort impact event. In: MacDonald I., Boyce A.J., Butler I.B., Herrington R.J. and Polya D.A. (Eds), Mineral Deposits and Earth Evolution. Geol. Soc. London Spec. Publ., 248, 31–58.

    Article  Google Scholar 

  • Jolley S.J., Freeman S.R., Barnicoat A.C., Phillips G.M., Knipe R.J. and Pather A., 2004. Structural controls on Witwatersrand Gold mineralization. J. Struct. Geol., 26, 1026–1086.

    Article  Google Scholar 

  • Kern H., 1982. P- and S-wave velocities in crustal and mantle rocks under the simultaneous action of high confining pressure and high temperature and the effect of the rock microstructure. In: Schreyer W. (Ed.), High Pressure Researchers in Geosciences. Schweizerbart, Stuttgart, Germany, 15–45.

    Google Scholar 

  • Kern H., Popp T., Gorbatsevich F., Zharikov A., Lobanov K.V. and Smirnov Yu.P., 2001. Pressure and temperature dependence of VP and VS in rocks from the superdeep well and from surface analogues at Kola and the nature of velocity anisotropy, Tectonophysics, 338, 113–134.

    Google Scholar 

  • Kern H., Mengel K., Strauss K.W., Ivankina T.I., Nikitin A.N. and Kukkonen I.T., 2009. Elastic wave velocities, chemistry and modal mineralogy of crustal rocks sampled by the Outokumpu scientific drill hole: Evidence from lab measurements and modelling. Phys. Earth. Planet. Inter., 175, 151–166.

    Article  Google Scholar 

  • Kern H., 2011. Measuring and modelling of P- and S-wave velocities on crustal rocks: a key for interpretation of seismic reflection and refraction data. Int. J. Geophys., 530728, DOI: 10.1155/2011/530728.

    Google Scholar 

  • Krapež B., 1985. The Ventersdorp Contact placer: a gold-pyrite placer of stream and debris- flow origins from the Archaean Witwatersrand Basin of South Africa. Sedimentology, 32, 223–234.

    Article  Google Scholar 

  • Kuusisto M., Kukkonen I.T., Heikkinen P. and Pesonen L.J., 2006. Lithological interpretation of crustal composition in the Fennoscandian Shield with seismic velocity data. Tectonophysics, 420, 283–299.

    Article  Google Scholar 

  • Malehmir A. and Bellefleur G., 2009. 3D seismic reflection imaging of volcanic-hosted massive sulfide deposits: Insights from reprocessing Halfmile Lake data, New Brunswick, Canada. Geophysics, 74, B209–B219.

    Article  Google Scholar 

  • Malehmir A., Dahlin P., Lundberg E., Juhlin C., Sjöström H. and Högdahl K., 2011. Reflection seismic investigations in the Dannemora area, central Sweden: insights into the geometry of polyphase deformation zones and magnetite-skarn deposits. J. Geophys. Res., 116, B11307.

    Article  Google Scholar 

  • Malehmir A., Durrheim R., Bellefleur G., Urosevic M., Juhlin C. and White D., 2012. Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics, 77, WC173–WC190.

    Article  Google Scholar 

  • Malehmir A., Andersson M., Lebedev M., Urosevic M. and Mikhaltsevitch V., 2013. Experimental estimation of velocities and anisotropy of a series of Swedish crystalline rocks and ores. Geophys. Prospect., 61, 153–167.

    Article  Google Scholar 

  • Malehmir A., Koivisto E., Manzi M., Cheraghi S., Durrheim R. and Bellefleur R., 2014. A review of reflection seismic investigations in three major metallogenic regions: The Kevitsa Ni-Cu- PGE district (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada). Ore Geol. Rev., 56, 423–441.

    Article  Google Scholar 

  • Manzi M.S.D., Gibson M.A.S., Hein K.A.A., King N. and Durrheim R.J., 2012. Application of 3D seismic techniques to evaluate ore resources in the West Wits line Goldfield and portions of the West Rand Goldfield, South Africa. Geophysics, 77, WC163–WC171.

    Article  Google Scholar 

  • Manzi M.S.D., Hein K.A.A., King N. and Durrheim R.J., 2013. Neoarchaean tectonic history of the Witwatersrand Basin and Ventersdorp Supergroup: New Constraints from high resolution 3D seismic reflection data. Tectonophysics, 590, 94–105.

    Article  Google Scholar 

  • Manzi M.S.D., Hein K.A.A., Durrheim R.J. and King N. 2014. The Ventersdorp Contact Reef model in the Kloof Gold Mine as derived from 3D seismics, geological mapping and exploration borehole datasets. Int. J. Rock Mech. Min. Sci., 66, 97–113.

    Google Scholar 

  • Manzi M., Cooper G., Malehmir A., Durrheim R. and Nkosi Z., 2015. Integrated interpretation of 3D seismic data to enhance the detection of the gold-bearing reef: Mponeng Gold mine, Witwatersrand Basin (South Africa). Geophys. Prospect., 63, 881–902.

    Article  Google Scholar 

  • McCarthy T.S., 2006. The Witwatersrand Supergroup. In: Johnson M.R., Anhaeusser C.R. and Thomas R.J. (Eds), The Geology of South Africa. Geological Society of South Africa, Johannesburg, South Africa, 155–186.

    Google Scholar 

  • Moon C.J. and Whateley M.K., 1989. Witwatersrand conglomerate gold: West Rand. In: Evans A.M. (Ed.), Introduction to Mineral Exploration. Blackwell Publishing, Oxford, U.K., 258–291.

    Google Scholar 

  • Milkereit B., Eaton D., Wu J., Perron G., Salisbury M., Berrer E.K. and Morrison G., 1996. Seismic imaging of massive sulphide deposits: Part II. Reflection seismic profiling. Econ. Geol., 91, 829–834.

    Google Scholar 

  • Milkereit B., Adam E., Bohlen T., Salisbury M. and Eaton D., 2004. 3D sesmic imaging for massive sulfide exploration. Extended Abstract. 66th EAGE Conference & Exhibition. European Association of Geoscientists and Engineers, Houten, The Netherlands.

    Google Scholar 

  • Myers R.E., McCarthy T.S. and Stanistreet R.E., 1989. A tectono-sedimentaryreconstruction of the development and evolution of the Witwatersrand Basin with particular emphasis on the Central Rand Group. S. Afr. J. Geol., 93, 211–223.

    Google Scholar 

  • Nováková L., Sosna K., Brož M., Najser J. and Novák P., 2012. The matrix porosity and related properties of a leucocratic granite from the Krudum Massif, west Bohemia. Acta Geodyn. Geometer., 9(168), 521–540.

    Google Scholar 

  • Phillips N. and Powell R., 2012. Origin of Witwatersrand gold: a metamorphic devolatilisationhydrothermal replacement model. Appl. Earth Sci., 120, 112–129.

    Article  Google Scholar 

  • Pretorius C.C., Steenkamp W.H. and Smith R.G., 1994. Developments in data acquisition, processing, and interpretation over ten years of vibroseismic surveying in South Africa. J. S. Afr. Inst. Min. Metall., 3, 249–258.

    Google Scholar 

  • Pretorius C.C., Muller M.R., Larroque M. and Wilkins C.A., 2003. Review of 16 years of hardrock seismics on the Kaapvaal Craton. In: Eaton D.W., Milkereit B. and Salisbury M.H. (Eds), Hardrock Seismic Exploration. Society of Exploration Geophysicists, Tulsa, OK, 247–68.

    Google Scholar 

  • Punturo R., Kern H., Cirrincione R., Mazzoleni P. and Pezzino A., 2005. P- and S-wave velocities and densities in silicate and calcite rocks from the Peloritani Mountains, Sicily (Italy): The effect of pressure, temperature and direction of wave propagation. Tectonophysics, 409, 55–72.

    Article  Google Scholar 

  • Robb L. and Meyer F., 1995. The Witwatersrand Basin, South Africa: Geological framework and mineralization processes. Ore Geol. Rev., 10, 67–94.

    Article  Google Scholar 

  • Robb L.J. and Robb V.M., 1998. Gold in the Witwatersrand Basin. In: Wilson M.G.C. and Anhaeusser C.R. (Eds), The Mineral Resources of South Africa. Geological Society of South Africa, Johannesburg, South Africa, 294–349.

    Google Scholar 

  • Rybach L. and Buntebarth G., 1981. Relationship between the petrophysical properties density, seismic velocity, heat generation and mineralogical constitution. Earth Planet. Sci. Let., 57, 367–376.

    Article  Google Scholar 

  • Rybach L. and Buntebarth G., 1984. The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. In: Čermák V., Rybach L. and Chapman D.S. (Eds), Terrestrial Heat Flow and the Structure of the Lithosphere. Tectonophysics, 103, 335–344.

    Google Scholar 

  • Salisbury M.H., Milkereit B., Ascough G., Adair R., Matthews L. and Schmitt D.R., 2000. Physical properties and seismic imaging of massive sulphides. Geophysics, 65, 1882–1889.

    Article  Google Scholar 

  • Salisbury M. and Snyder D., 2007. Application of seismic methods to mineral exploration. In: Goodfellow W.D. (Ed.), Mineral Deposits of Canada: a Synthesis of Major Deposit Types District Metallogeny, the Evolution of Geological Provinces and Exploration Methods. Geological Association of Canada, St. John’s, NL, Canada, ISBN: 978-1-897095-24-9, 971–982.

    Google Scholar 

  • Schön J.H., 2004. Physical Properties of Rocks: Fundaments and Principles of Petrophysics. Handbook of Geophysical Exploration: Seismic Exploration. Elsevier, Amsterdam, The Netherlands, 59–76, 133–233.

    Google Scholar 

  • Stanistreet I.G. and McCarthy T.S., 1991. Changing tectono-sedimentary scenarios relevant to the development of the Late Archaean Witwatersrand Basin. J. Afr. Earth Sci., 13, 65–81.

    Article  Google Scholar 

  • Van der Westhuizen W.A., De Bruiyn H. and Meintjes P.G., 1991. The Ventersdorp Supergroup: an overview. J. Afr. Earth Sci., 3, 83–105.

    Article  Google Scholar 

  • Viljoen M., 2009. The life, death and revival of the Central Rand goldfield. World Gold 2009 Conference. The South African Institute of Mining and Metallurgy, Johannesburg, South Africa, 131–138.

    Google Scholar 

  • Walsh J. B. and Brace W., 1964. A fracture criterion for brittle anisotropic rock. J. Geophys. Res., 69, 3449–3456.

    Article  Google Scholar 

  • Wood G., O’Dowd C., Cosma C. and Enescu N., 2012. An interpretation of surface and borehole seismic surveys for mine planning at the uranium deposit, northern Saskatchewan, Canada. Geophysics, 77, WC203–WC212.

    Article  Google Scholar 

  • Wronkiewicz D. and Condie K.C., 1987. Geochemistry of Archaean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochim. Cosmochim. Acta, 51, 2401–2416.

    Article  Google Scholar 

  • Wyllie M.R.J., Gregory A.R. and Gardner G.H.F., 1956. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 23, 459–493.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa S. D. Manzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkosi, N.Z., Manzi, M.S.D., Drennan, G.R. et al. Experimental measurements of seismic velocities on core samples and their dependence on mineralogy and stress; Witwatersrand Basin (South Africa). Stud Geophys Geod 61, 115–144 (2017). https://doi.org/10.1007/s11200-016-0804-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-016-0804-x

Keywords

Navigation