Skip to main content
Log in

Empirical mode decomposition of long-term polar motion observations

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We use the Empirical Mode Decomposition (EMD) method to study the decadal variations in polar motion and its long-term trend since year 1900. The existence of the so-called “Markowitz wobble”, a multidecadal fluctuation of the mean pole of rotation whose nature has long been debated since its discovery in 1960, is confirmed. In the EMD approach, the Markowitz wobble naturally arises as an empirical oscillatory term in polar motion, showing significant amplitude variations and a period of approximately 3 decades. The path of the time-averaged, non-cyclic component of polar motion matches the results of previous investigations based on classical spectral methods. However, our analysis also reveals previously unnoticed steep variations (change points) in the rate and the direction of secular polar motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen Y. and Feng M.Q., 2003. A technique to improve the empirical mode decomposition in the Hilbert-Huang transform. Earthq. Eng. Eng. Vib., 2, 75–85.

    Article  Google Scholar 

  • Chow G.C., 1960. Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28, 591–605.

    Article  Google Scholar 

  • Dickman S., 1981. Investigation of controversial polar motion features using homogeneous International Latitude Service data. J. Geophys. Res., 86(B6), 4904–4912.

    Article  Google Scholar 

  • Dickman S., 1983. The rotation of the ocean-solid Earth system. J. Geophys. Res., 88(B8), 6373–6394

    Article  Google Scholar 

  • Dickman S., 2000. Tectonic and cryospheric excitation of the Chandler Wobble and a brief review of the secular motion of Earth’s rotation pole. In: Dick S., McCarthy D. and Luzum B. (Eds), Polar Motion: Historical and Scientific Problems, IAU Colloquium 178. Vol. 208, 421–436.

    Google Scholar 

  • Dumberry M., 2008. Gravitational torque on the inner core and decadal polar motion. Geophys. J. Int., 172, 903–920.

    Article  Google Scholar 

  • Dumberry M. and Bloxham J., 2002. Inner core tilt and polar motion. Geophys. J. Int., 151, 377–392.

    Article  Google Scholar 

  • Gross R.S., 1990. The secular drift of the rotation pole. In: Boucher C. and Wilkins G.A. (Eds), Earth Rotation and Coordinate Reference Frames. International Association of Geodesy Symposia 105. Springer-Verlag, Heidelberg, Germany, 146–153.

    Article  Google Scholar 

  • Gross R.S., 2007. Earth rotation variations-long period. In: Schubert G. (Ed.), Treatise on Geophysics 3, 239–294. Elsevier, Amsterdam, The Netherlands, ISBN: 9780444527486, DOI: 10.1016/B978-044452748-6.00057-2.

    Article  Google Scholar 

  • Gross R.S. and Vondrák J., 1999. Astrometric and space-geodetic observations of polar wander. Geophys. Res. Lett., 26, 2085–2088.

    Article  Google Scholar 

  • Höpfner J., 2004. Low-frequency variations, Chandler and annual wobbles of polar motion as observed over one century. Surv. Geophys., 25, 1–54.

    Article  Google Scholar 

  • Huang N.E. and Shen S.S. (Eds), 2005. Hilbert-Huang Transform and its Aapplications. World Scientific, Singapore. ISBN: 978-981-256-376-7 (hardcover), 978-981-4480-06-2 (ebook).

    Book  Google Scholar 

  • Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.-C., Tung C.C. and Liu H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London A, 454, 903–995.

    Article  Google Scholar 

  • Huang N.E. and Wu Z., 2008. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, DOI: 10.1029/2007RG000228.

    Google Scholar 

  • Kim D. and Oh H.-S., 2009. EMD: a package for empirical mode decomposition and Hilbert spectrum. R Journal, 1, 40–46.

    Google Scholar 

  • Lambeck K., 2005. The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Markowitz W., 1960. Latitude and longitude, and the secular motion of the pole. In: Runcorn S.K. (Ed.), Methods and Techniques in Geophysics. Interscience Publishers, London, U.K, 325–361.

    Google Scholar 

  • McCarthy D.D. and Luzum B.J., 1996. Path of the mean rotational pole from 1899 to 1994. Geophys. J. Int., 125, 623–629.

    Article  Google Scholar 

  • Olivieri M. and Spada G., 2013. Intermittent sea–level acceleration. Global Planet. Change, 109, 64–72.

    Article  Google Scholar 

  • Poma A., 2000. The Markowitz wobble. In: Dick S., McCarthy D. and Luzum B. (Eds), Polar Motion: Historical and Scientific Problems, IAU Colloquium 178. Vol. 208, 351–354.

    Google Scholar 

  • Poma A., Proverbio E. and Uras S., 1991. Decade fluctuations in the Earth’s rate of rotation and long–term librations in polar motion. Il Nuovo Cimento, C14, 119–125.

    Article  Google Scholar 

  • Ponte R., Rajamony J. and Gregory J., 2002. Ocean angular momentum signals in a climate model and implications for Earth rotation. Clim. Dyn., 19, 181–190.

    Article  Google Scholar 

  • Torres M.E., Colominas M.A., Schlotthauer G. and Flandrin P., 2011. A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). The Institute of Electrical and Electronics Engineers, Piscataway, NJ, 4144–4147, DOI: 10.1109/ICASSP.2011.5947265.

    Chapter  Google Scholar 

  • Vicente R. and Currie R., 1976. Maximum entropy spectrum of long-period polar motion. Geophys. J. Int., 46, 67–73.

    Article  Google Scholar 

  • Vondrák J., 1985. Long-period behaviour of polar motion between 1900.0 and 1984.0. Ann. Geophys., 3, 351–356.

    Google Scholar 

  • Vondrák J., Ron C., Pešek I. and Cepek A., 1995. New global solution of earth orientation parameters from optical astrometry in 1900–1990. Astron. Astrophys., 297, 899–906.

    Google Scholar 

  • Wang X.H., Wang Q.J. and Liu J., 2012. Application of empirical mode decomposition in the ultra short-term prediction of polar motion. Acta Astronomica Sinica, 53, 519–526.

    Google Scholar 

  • Wessel P. and Smith W.H.F., 1998. New, improved version of Generic Mapping Tools released. EOS Trans. AGU, 79, 579.

    Article  Google Scholar 

  • Wu Z. and Huang N.E., 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 1–41.

    Article  Google Scholar 

  • Wu Z., Huang N.E., Long S.R. and Peng C.-K., 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Nat. Acad. Sci., 104, 14889–14894.

    Article  Google Scholar 

  • Young I.T. and Van Vliet L.J., 1995. Recursive implementation of the Gaussian filter. Signal Process., 44, 139–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Spada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spada, G., Galassi, G. & Olivieri, M. Empirical mode decomposition of long-term polar motion observations. Stud Geophys Geod 59, 200–211 (2015). https://doi.org/10.1007/s11200-014-1151-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-1151-4

Keywords

Navigation