Skip to main content
Log in

Topographic and atmospheric effects on goce gradiometric data in a local north-oriented frame: A case study in Fennoscandia and Iran

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Satellite gradiometry is an observation technique providing data that allow for evaluation of Stokes’ (geopotential) coefficients. This technique is capable of determining higher degrees/orders of the geopotential coefficients than can be achieved by traditional dynamic satellite geodesy. The satellite gradiometry data include topographic and atmospheric effects. By removing those effects, the satellite data becomes smoother and harmonic outside sea level and therefore more suitable for downward continuation to the Earth’s surface. For example, in this way one may determine a set of spherical harmonics of the gravity field that is harmonic in the exterior to sea level.

This article deals with the above effects on the satellite gravity gradients in the local north-oriented frame. The conventional expressions of the gradients in this frame have a rather complicated form, depending on the first-and second-order derivatives of the associated Legendre functions, which contain singular factors when approaching the poles. On the contrary, we express the harmonic series of atmospheric and topographic effects as non-singular expressions. The theory is applied to the regions of Fennoscandia and Iran, where maps of such effects and their statistics are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertella A., Migliaccio F. and Sansò F., 2002. GOCE: The Earth field by space gradiometry. Celestial Mechanics and Dynamical Astronomy, 83, 1–15.

    Article  Google Scholar 

  • Balmino G., Perosanz F., Rummel R., Sneeuw N., Sünkel H. and Woodworth P., 1998. European Views on Dedicated Gravity Field Missions: GRACE and GOCE. Earth Sciences Division Consultation Document, ESA, ESD-MAG-REP-CON-001.

  • Balmino G., Perosanz F., Rummel R., Sneeuw N. and Suenkel H., 2001. CHAMP, GRACE and GOCE: Mission concepts and simulations. Bollettino di Geofisica Teoricae Applicata, 40, 309–320.

    Google Scholar 

  • ESA, 1999. Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233(1). Report for Mission Selection of the Four Candidate Earth Explorer Missions, ESA Publications Division, ESA, Noordwijk, ISBN 9290925280.

  • Heck B., 2003. On Helmert’s methods of condensation. J. Geodesy, 77, 155–170.

    Article  Google Scholar 

  • Heiskanen W. and Moritz H., 1967. Physical Geodesy. W.H. Freeman, San Fransisco.

    Google Scholar 

  • Ilk K.H., 1983. Ein eitrag zur Dynamik ausgedehnter Körper-Gravitationswechselwirkung. Deutsche Geodätische Kommission, Reihe C, Heft Nr. 288, München.

    Google Scholar 

  • Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. and Olson T.R., 1998. The Development of the Joint NASE GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Technical Report NASA/TP-1996/8-206861, NASA, Greenbelt, Maryland, USA.

    Google Scholar 

  • Li X., 2001a. Vertical resolution: Gravity versus vertical gravity gradient. The Leading Edge, 20, 901–904.

    Article  Google Scholar 

  • Li Y., 2001b. Processing Gravity Gradiometer Data Using an Equivalent Source Technique. Gravity and Magnetics Research Consortium, Department of Geophysics, Colorado School of Mines, Golden, CO (http://www.geophysics.mines.edu/cgem/pdf%20files/Li%20Processing GG%20Equivalent%20Source.pdf).

    Google Scholar 

  • Li Y., 2001c. 3-D inversion of gravity gradiometer data. SEG Expanded Abstracts, 20, 1470–1473, doi: 10.1190/1.1816383.

    Article  Google Scholar 

  • Makhloof A., 2007. The Use of Topographic-Isostatic Mass Information in Geodetic Applications. Ph.D. Thesis, Department of Theoretical and Physical Geodesy, University of Bonn, Bonn, Germany.

    Google Scholar 

  • Martinec Z., Matyska C., Grafarend E.W. and Vaníček P., 1993. On Helmert’s 2nd condensation method. Manuscripta Geodaetica, 18, 417–421.

    Google Scholar 

  • Martinec Z. and Vaníček P., 1994. Direct topographical effect of Helmert’s condensation for a spherical geoid. Manuscripta Geodaetica, 19, 257–268.

    Google Scholar 

  • Mickus K.L. and Hinojosa J.H., 2001. The complete gravity gradient tensor derived from the vertical component of gravity: a Fourier transform technique. J. Appl. Geophys., 46, 159–274.

    Article  Google Scholar 

  • Novák P., 2000. Evaluation of Gravity Data for the Stokes-Helmert Solution to the Geodetic Boundary-Value Problem. Technical Report 207, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, Canada.

    Google Scholar 

  • Novák P. and Grafarend E.W., 2006. The effect of topographical and atmospherical masses on spaceborne gravimetric and gradiomtric data. Stud. Geophys. Geod., 50, 549–582

    Article  Google Scholar 

  • Pawlowski B., 1998. Gravity gradiometry in resource exploration. The Leading Edge, 17, 51–52.

    Article  Google Scholar 

  • Petrovkaya M.S. and Vershkov A.N., 2006. Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames. J. Geodesy, 80, 117–127.

    Article  Google Scholar 

  • Reed G.B., 1973. Application of Kinematical Geodesy for Determining the Short Wave Length Components of the Gravity Field by Satellite Gradiometry. Report No. 201, Department of Geodetic Science, Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Reigber C., Jochmann H., Wünsch J., Petrovic S., Schwintzer P., Barthelmes F., Neumayer K.H., König R., Förste C., Balmino G., Biancale R., Lemoine J.M., Loyer S. and Perosanz F., 2004b. Earth gravity field and seasonal variability from CHAMP. In: Reigber C., Lühr H., Schwintzer P. and Wickert J. (Eds), Earth Observation with CHAMP-Results from Three Years in Orbit. Springer-Verlag, Berlin, Heidelberg, 25–30.

    Google Scholar 

  • Sjöberg L.E., 1998. The ellipsoidal corrections to the topographic geoid effects. J. Geodesy, 77, 804–808.

    Article  Google Scholar 

  • Sjöberg L.E., 2000. Topographic effects by the Stokes-Helmert method of geoid and quasigeoid determinations. J. Geodesy, 74, 255–268.

    Article  Google Scholar 

  • Sjöberg L.E., 2007. Topographic bias by analytical continuation in physical geodesy. J. Geodesy, 81, 345–350.

    Article  Google Scholar 

  • Sjöberg L.E. and Nahavandchi H., 1999. On the indirect effect in the Stokes-Helmert method of geoid determination. J. Geodesy, 73, 87–93.

    Article  Google Scholar 

  • Tapley B., Ries J., Bettadpur S., Chambers D., Cheng M., Condi F., Gunter B., Kang Z., Nagel P., Pastor R., Pekker T., Poole S. and Wang F., 2005. GGM02-an improved Earth gravity field model from GRACE. J. Geodesy, 79, 467–478.

    Article  Google Scholar 

  • Tsoulis D., 2001. Terrain correction computations for a densly sampled DTM in the Bavarian Alps. J. Geodesy, 75, 291–307.

    Article  Google Scholar 

  • Wieczorek M.A., 2007. The gravity and topography of the terrestrial planets. In: Schubert G. (Ed.), Treatise on Geophysics, Vol. 10, Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Wild F. and Heck B., 2004a. A comparison of different isostatic models applied to satellite gravity gradiometry. In: Jekeli C., Bastos L. and Fernandes J. (Eds.), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, 129, Springer-Verlag, Berlin, Heidelberg, 230–235.

    Chapter  Google Scholar 

  • Wild F. and Heck B., 2004b. Effects of topographic and isostatic masses in satellite gravity gradiometry. In: Lacoste H. (Ed.), Proceedings of the Second International GOCE User Workshop, The Geoid and Oceanography. ESA SP-569, ESA Publications Division, Noordwijk, The Netherlands, ISBN: 92-9092-880-8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Eshagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshagh, M., Sjöberg, L.E. Topographic and atmospheric effects on goce gradiometric data in a local north-oriented frame: A case study in Fennoscandia and Iran. Stud Geophys Geod 53, 61–80 (2009). https://doi.org/10.1007/s11200-009-0004-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-009-0004-z

Key words

Navigation