Skip to main content
Log in

How are they different? A quantitative domain comparison of information visualization and data visualization (2000–2014)

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Information visualization and data visualization are often viewed as similar, but distinct domains, and they have drawn an increasingly broad range of interest from diverse sectors of academia and industry. This study systematically analyzes and compares the intellectual landscapes of the two domains between 2000 and 2014. The present study is based on bibliographic records retrieved from the Web of Science. Using a topic search and a citation expansion, we collected two sets of data in each domain. Then, we identified emerging trends and recent developments in information visualization and data visualization, captivated in intellectual landscapes, landmark articles, bursting keywords, and citation trends of the domains. We found out that both domains have computer engineering and applications as their shared grounds. Our study reveals that information visualization and data visualization have scrutinized algorithmic concepts underlying the domains in their early years. Successive literature citing the datasets focuses on applying information and data visualization techniques to biomedical research. Recent thematic trends in the fields reflect that they are also diverging from each other. In data visualization, emerging topics and new developments cover dimensionality reduction and applications of visual techniques to genomics. Information visualization research is scrutinizing cognitive and theoretical aspects. In conclusion, information visualization and data visualization have co-evolved. At the same time, both fields are distinctively developing with their own scientific interests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://search.carrotsearch.com/carrot2-webapp/search.

  2. In this article, keywords refer to both author keywords and ISI keyword plus.

References

  • Aigner, W., Miksch, S., Schumann, H., & Tominski, C. (2011). Visualization of time-oriented data. London: Springer.

    Book  Google Scholar 

  • Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11, R106.

    Article  Google Scholar 

  • Andronis, C., Sharma, A., Virvilis, V., Deftereos, S., & Persidis, A. (2011). Literature mining, ontologies and information visualization for drug repurposing. Briefings in Bioinformatics, 12(4), 357–368.

    Article  Google Scholar 

  • Asuncion, A., & Newman, D. (2007). UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html. Accessed 30 June 2015.

  • Bederson, B., & Shneiderman, B. (2003). The craft of information visualization: Readings and reflections. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.

    Article  MATH  Google Scholar 

  • Berkovitch, F., Nicolet, Y., Wan, J. T., Jarrett, J. T., & Drennan, C. L. (2004). Crystal structure of biotin synthase: An s-adenosylmethionine-dependent radical enzyme. Science, 303(5654), 76–79.

    Article  Google Scholar 

  • Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., et al. (2004). Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 9(9), 418–425.

    Article  Google Scholar 

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  Google Scholar 

  • Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., et al. (2001). Minimum information about a microarray experiment (MIAME)—Toward standards for microarray data. Nature Genetics, 29, 365–371.

    Article  Google Scholar 

  • Bui, B. T. S., Florentin, D., Fournier, F., Ploux, O., Méjean, A., & Marquet, A. (1998). Biotin synthase mechanism: On the origin of sulphur. FEBS Letters, 440(1–2), 226–230.

    Google Scholar 

  • Bui, B. T. S., Florentin, D., Marquet, A., Benda, R., & Trautwein, A. X. (1999). Mössbauer studies of Escherichia coli biotin synthase: Evidence for reversible interconversion between [2Fe–2S](2+) and [4Fe–4S](2+) clusters. FEBS Letters, 459(3), 411–414.

    Article  Google Scholar 

  • Card, S. K., Mackinlay, J. D., & Schneiderman, B. (1999). Readings in information visualization: Using vision to think. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Cheek, J., & Broderick, J. B. (2001). Adenosylmethionine-dependent iron–sulfur enzymes: Versatile clusters in a radical new role. Journal of Biological Inorganic Chemistry, 6(3), 209–226.

    Article  Google Scholar 

  • Chen, C. (1999). Information visualisation and virtual environments. London: Springer.

    Book  Google Scholar 

  • Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.

    Article  Google Scholar 

  • Chen, C. (2010). Information visualization. Wiley Interdisciplinary Review: Computational Statistics, 2(4), 387–403.

    Article  Google Scholar 

  • Chen, C., Dubin, R., & Kim, M. C. (2014a). Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opinion on Biological Therapy, 14(9), 1295–1317.

    Article  Google Scholar 

  • Chen, C., Dubin, R., & Kim, M. C. (2014b). Orphan drugs and rare diseases: A scientometric review (2000–2014). Expert Opinion on Orphan Drugs, 2(7), 709–724.

    Article  Google Scholar 

  • Chen, C. H., Härdle, W. K., & Unwin, A. (Eds.). (2008). Handbook of data visualization (Springer handbooks of computational statistics). Santa Clara, CA: Springer.

    Google Scholar 

  • Chen, C., Hu, Z., Liu, S., & Tseng, H. (2012). Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opinions on Biological Therapy, 12(5), 593–608.

    Article  Google Scholar 

  • Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of co-citation clusters: A multiple-perspective co-citation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409.

    Article  Google Scholar 

  • Chen, C., & Leydesdorff, L. (2014). Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. Journal of the American Society for Information Science and Technology, 65(2), 334–351.

    Article  Google Scholar 

  • Chinwalla, A. T., Cook, L. L., Delehaunty, K. D., et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420, 520–562.

    Article  Google Scholar 

  • Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 521–554.

    Article  MathSciNet  Google Scholar 

  • Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.

    Article  MATH  Google Scholar 

  • Cosper, N. J., Booker, S. J., Ruzicka, F., Frey, P. A., & Scott, R. A. (2000). Direct Fe–S cluster involvement in generation of a radical in lysine 2,3-aminomutase. Biochemistry, 39(51), 15668–15673.

    Article  Google Scholar 

  • Davis, A. P., Murphy, C. G., Johnson, R., Lay, J. M., Lennon-Hopkins, K., Saraceni-Richards, C., et al. (2013). The comparative toxicogenomics database: Update 2013. Nucleic Acids Research, 41(D1), D1104–D1114.

    Article  Google Scholar 

  • Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391–407.

    Article  Google Scholar 

  • DellValle, M. (2010). Electronic tongues employing electrochemical sensors. Electroanalysis, 22(14), 1539–1555.

    Google Scholar 

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.

    Article  Google Scholar 

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. London: Wiley-Interscience.

    MATH  Google Scholar 

  • Duin, E. C., Lafferty, M. E., Crouse, B. R., Allen, R. M., Sanyal, I., Flint, D. H., et al. (1997). [2Fe–2S] to [4Fe–4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry, 36(39), 11811–11820.

    Article  Google Scholar 

  • Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14863–14868.

    Article  Google Scholar 

  • Ellis, G., & Dix, A. (2007). A taxonomy of clutter reduction for information visualisation. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1216–1223.

    Article  Google Scholar 

  • Elmqvist, N., Moere, A. V., Jetter, H. C., Cernea, D., Reiterer, H., & Jankun-Kelly, T. J. (2011). Fluid interaction for information visualization. Information Visualization, 10(4), 327–340.

    Article  Google Scholar 

  • Fabrikant, S. I., & Buttenfield, B. P. (2001). Formalizing semantic spaces for information access. Annals of the Association of American Geographers, 91(2), 263–280.

    Article  Google Scholar 

  • Faisal, S., Blandford, A., & Potts, H. W. (2013). Making sense of personal health information: Challenges for information visualization. Health Informatics Journal, 19(3), 198–217.

    Article  Google Scholar 

  • Fekete, J. (2004). The infovis toolkit. In INFOVIS 2004 IEEE symposium on information visualization (pp. 167–174).

  • Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171.

    Article  Google Scholar 

  • Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.

    Article  Google Scholar 

  • Fontecave, M., Mulliez, E., & Ollagnier-de-Choudens, S. (2001). Adenosylmethionine as a source of 5′-deoxyadenosyl radicals. Current Opinion in Chemical Biology, 5(5), 506–512.

    Article  Google Scholar 

  • Francisco, A. P., Vaz, C., Monteiro, P. T., Melo-Cristino, J., Ramirez, M., & Carriço, J. A. (2012). PHYLOViZ: Phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics, 13, 87.

    Article  Google Scholar 

  • Frey, P. A. (2001). Radical mechanisms of enzymatic catalysis. Annual Review of Biochemistry, 70, 121–148.

    Article  Google Scholar 

  • Frey, P. A., Hegeman, A. D., & Ruzicka, F. J. (2008). The radical SAM superfamily. Critical Reviews in Biochemistry and Molecular Biology, 43(1), 63–88.

    Article  Google Scholar 

  • Frey, P. A., & Magnusson, O. T. (2003). s-Adenosylmethionine: A wolf in sheep’s clothing, or a rich man’s adenosylcobalamin? Chemical Reviews, 103(6), 2129–2148.

    Article  Google Scholar 

  • Friendly, M. (2008). Milestones in the history of thematic cartography, statistical graphics, and data visualization. http://www.math.usu.edu/~symanzik/teaching/2009_stat6560/Downloads/Friendly_milestone.pdf. Accessed 7 February 2015.

  • Gaviria, A. R. (2008). When is information visualization art? Determining the critical criteria. Leonardo, 41(5), 479–482.

    Article  Google Scholar 

  • Gehlenborg, N., O’Donoghue, S. I., Baliga, N. S., Goesmann, A., Hibbs, M. A., Kitano, H., et al. (2010). Visualization of omics data for systems biology. Nature Methods, 7(3 Suppl), S56–S68.

    Article  Google Scholar 

  • Grove, T. L., Benner, J. S., Radle, M. I., Ahlum, J. H., Landgraf, B. J., Krebs, C., et al. (2011). A radically different mechanism for s-adenosylmethionine—Dependent methyltransferases. Science, 332(6029), 604–607.

    Article  Google Scholar 

  • Guianvarc’h, D., Florentin, D., Bui, B. T. S., Nunzi, F., & Marquet, A. (1997). Biotin synthase, a new member of the family of enzymes which uses s-adenosylmethionine as a source of deoxyadenosyl radical. Biochemical and Biophysical Research Communications, 236(2), 402–406.

    Article  Google Scholar 

  • Henshaw, T. F., Cheek, J., & Broderick, J. B. (2000). The [4Fe–4S]1+ cluster of pyruvate formate-lyase activating enzyme generates the glycyl radical on pyruvate formate-lyase: EPR-detected single turnover. Journal of the American Chemistry Society, 122(34), 8331–8332.

    Article  Google Scholar 

  • Herman, I., Melancon, G., & Marshall, M. S. (2000). Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics, 6(1), 24–43.

    Article  Google Scholar 

  • Hewitson, K. S., Ollagnier-de-Choudens, S., Sanakis, Y., Shaw, N. M., Baldwin, J. E., Münck, E., et al. (2001). The iron–sulfur center of biotin synthase: Site-directed mutants. Journal of Biological Inorganic Chemistry, 7(1–2), 83–93.

    Google Scholar 

  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science and Engineering, 9(3), 90–95.

    Article  Google Scholar 

  • Inselberg, A., & Dimsdale, B. (1990). Parallel coordinates: A tool for visualizing multi-dimensional geometry. In Visualization90 proceedings of the first IEEE conference on visualization (pp. 361–378).

  • Isenberg, P. (2007). Interactive tree comparison for co-located collaborative information visualization. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1232–1239.

    Article  MathSciNet  Google Scholar 

  • Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., & Moller, T. (2013). A systematic review on the practice of evaluating visualization. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2818–2827.

    Article  Google Scholar 

  • Jarrett, J. T. (2003). The generation of 5′-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes. Current Opinion in Chemical Biology, 7(2), 174–182.

    Article  Google Scholar 

  • Jenssen, T., Lægreid, A., Komorowski, J., & Hovig, E. (2001). A literature network of human genes for high-throughput analysis of gene expression. Nature Genetics, 28, 21–28.

    Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis. Secaucus, NJ: Springer.

    MATH  Google Scholar 

  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(D1), D109–D114.

    Article  Google Scholar 

  • Kaul, S., Koo, H., Jenkins, J., et al. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796–815.

    Article  Google Scholar 

  • Kersten-Oertel, M., Jannin, P., & Collins, D. L. (2013). The state of the art of visualization in mixed reality image guided surgery. Computerized Medical Imaging and Graphics, 37(2), 98–112.

    Article  Google Scholar 

  • Kim, M. C., & Chen, C. (2015). A scientometric review of emerging trends and new developments in recommendation systems. Scientometrics, 104(1), 239–263.

    Article  Google Scholar 

  • Kleinberg, J. (2002). Bursty and hierarchical structure in streams. In KDD02 Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 91–101).

  • Kohonent, T. (1997). Self-organizing maps. Secaucus, NJ: Springer.

    Book  Google Scholar 

  • Krzywinski, M. I., Schein, J. E., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645.

    Article  Google Scholar 

  • Külzer, R., Pils, T., Kappl, R., Hüttermann, J., & Knappe, J. (1998). Reconstitution and characterization of the polynuclear iron–sulfur cluster in pyruvate formate-lyase-activating enzyme. The Journal of biological chemistry, 273(9), 4897–4903.

    Article  Google Scholar 

  • Lam, H., Bertini, E., Isenberg, P., Plaisant, C., & Carpendale, S. (2011). Empirical studies in information visualization: Seven scenarios. IEEE Transactions on Visualization and Computer Graphics, 18(9), 1520–1536.

    Article  Google Scholar 

  • Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25.

    Article  Google Scholar 

  • Layer, G., Moser, J., Heinz, D. W., Jahn, D., & Schubert, W. (2003). Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes. The EMBO Journal, 22, 6214–6224.

    Article  Google Scholar 

  • Lee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Leung, Y. K., & Apperley, M. D. (1994). A review and taxonomy of distortion-oriented presentation techniques. ACM Transactions on Computer-Human Interaction (TOCHI), 1(2), 126–160.

    Article  Google Scholar 

  • Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760.

    Article  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.

    Article  Google Scholar 

  • Lieder, K. W., Booker, S., Ruzicka, F. J., Beinert, H., Reed, G. H., & Frey, P. A. (1998). s-Adenosylmethionine-dependent reduction of lysine 2,3-aminomutase and observation of the catalytically functional iron–sulfur centers by electron paramagnetic resonance. Biochemistry, 37(8), 2578–2585.

    Article  Google Scholar 

  • Liu, S., Cui, W., Wu, Y., & Liu, M. (2014). A survey on information visualization: Recent advances and challenges. The Visual Computer, 30(12), 1373–1393.

    Article  Google Scholar 

  • Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., et al. (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology, 14(13), 1675–1680.

    Article  Google Scholar 

  • Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190.

    Article  Google Scholar 

  • Marquet, A. (2001). Enzymology of carbon–sulfur bond formation. Current Opinion in Chemical Biology, 5(5), 541–549.

    Article  Google Scholar 

  • McKenna, A., Hanna, B., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1303.

    Article  Google Scholar 

  • Mehlan, H., Schmidt, F., Weiss, S., Schüler, J., Fuchs, S., Riedel, K., et al. (2013). Data visualization in environmental proteomics. Proteomics, 13(18–19), 2805–2821.

    Google Scholar 

  • Miller, J. R., Busby, R. W., Jordan, S. W., Cheek, J., Henshaw, T. F., Ashley, G. W., et al. (2000). Escherichia coli LipA is a lipoyl synthase: In vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl–acyl carrier protein. Biochemistry, 39(49), 15166–15178.

    Article  Google Scholar 

  • Moreland, J. L., Gramada, A., Buzko, O. V., Zhang, Q., & Bourne, P. E. (2005). The molecular biology toolkit (MBT): A modular platform for developing molecular visualization applications. BMC Bioinformatics, 6, 21.

    Article  Google Scholar 

  • Morse, E., Lewis, M., & Olsen, K. A. (2000). Evaluating visualizations: Using a taxonomic guide. International Journal of Human-Computer Studies, 53(5), 637–662.

    Article  MATH  Google Scholar 

  • Munzner, T. (2009). A nested model for visualization design and validation. IEEE Transactions on Visualization and Computer Graphics, 15(6), 921–928.

    Article  Google Scholar 

  • Ollagnier, S., Mulliez, E., Schmidt, P. P., Eliasson, R., Gaillardi, J., Deronzier, C., et al. (1997). Activation of the anaerobic ribonucleotide reductase from Escherichia coli. The Journal of biological Chemistry, 272(39), 24216–24223.

    Article  Google Scholar 

  • Ollagnier-De-Choudens, S., Mulliez, E., Hewitson, K. S., & Fontecave, M. (2002a). Biotin synthase is a pyridoxal phosphate-dependent cysteine desulfurase. Biochemistry, 41(29), 9145–9152.

    Article  Google Scholar 

  • Ollagnier-de-Choudens, S., Sanakis, Y., Hewitson, K. S., Roach, P., Baldwin, J. E., Münck, E., et al. (2000). Iron–sulfur center of biotin synthase and lipoate synthase. Biochemistry, 39(14), 4165–4173.

    Article  Google Scholar 

  • Ollagnier-de-Choudens, S., Sanakis, Y., Hewitson, K. S., Roach, P., Münck, E., & Fontecave, M. (2002b). Reductive cleavage of s-adenosylmethionine by biotin synthase from Escherichia coli. The Journal of biological chemistry, 277(16), 13449–13454.

    Article  Google Scholar 

  • Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, Article ID 156869.

  • Orford, S., Harris, R., & Dorling, D. (1999). Geography: Information visualization in the social sciences. Social Science Computer Review, 17(3), 289–304.

    Article  Google Scholar 

  • Penterman, R., Klink, S. I., de Koning, H., Nisato, G., & Broer, D. J. (2002). Single-substrate liquid–crystal displays by photo-enforced stratification. Nature, 417, 55–58.

    Article  Google Scholar 

  • Pérez, F., & Granger, B. E. (2007). IPython: A system for interactive scientific computing. Computing in Science and Engineering, 9(3), 21–29.

    Article  Google Scholar 

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.

    Article  Google Scholar 

  • Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., et al. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 19, 45–50.

    Article  Google Scholar 

  • Rabow, A. A., Shoemaker, R. H., Sausville, E. A., & Covell, D. G. (2002). Mining the national cancer institute’s tumor-screening database: Identification of compounds with similar cellular activities. Journal of Medical Chemistry, 45(4), 818–840.

    Article  Google Scholar 

  • Rauber, A., Merkl, D., & Dittenbach, M. (2002). The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks, 13(6), 1331–1341.

    Article  MATH  Google Scholar 

  • Rhee, S. Y., Beavis, W., Berardini, T. Z., Chen, G., Dixon, D., Doyle, A., et al. (2003). The Arabidopsis Information Resource (TAIR): A model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Research, 31(1), 224–228.

    Article  Google Scholar 

  • Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge, MA: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Riul, A., Jr, Dantas, C. A. R., Miyazakic, C. M., & Oliveira, O. N., Jr. (2010). Recent advances in electronic tongues. Analyst, 135, 2481–2495.

    Article  Google Scholar 

  • Robertson, G. G., Card, S. K., & Mackinlay, J. D. (1993). Information visualization using 3D interactive animation. Communications of the ACM, 36(4), 57–71.

    Article  Google Scholar 

  • Robertson, G. G., Mackinlay, J. D., & Card, S. K. (1991). Cone trees: Animated 3D visualizations of hierarchical information. In CHI91 Proceedings of the SIGCHI conference on human factors in computing systems (pp. 189–194).

  • Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., et al. (2011). Integrative genomics viewer. Nature Biotechnology, 29, 24–26.

    Article  Google Scholar 

  • Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., et al. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. The Plant Cell, 13(1), 11–29.

    Article  Google Scholar 

  • Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. The Plant Journal, 23(1), 131–142.

    Article  Google Scholar 

  • Rzhetsky, A., Iossifov, I., Koike, T., Krauthammer, M., Kra, P., Morris, M., et al. (2004). GeneWays: A system for extracting, analyzing, visualizing, and integrating molecular pathway data. Journal of Biomedical Informatics, 37(1), 43–53.

    Article  Google Scholar 

  • Salomonis, N., Hanspers, K., Zambon, A. C., Vranizan, K., Lawlor, S. C., Dahlquist, K. D., et al. (2007). GenMAPP 2: New features and resources for pathway analysis. BMC Bioinformatics, 8, 217.

    Article  Google Scholar 

  • Sanyal, I., Cohen, G., & Flint, D. H. (1994). Biotin synthase: Purification, characterization as a [2Fe–2S]cluster protein, and in vitro activity of the Escherichia coli bioB gene product. Biochemistry, 33(12), 3625–3631.

    Article  Google Scholar 

  • Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235), 467–470.

    Article  Google Scholar 

  • Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., et al. (2000). A gene expression database for the molecular pharmacology of cancer. Nature Genetics, 23(3), 236–244.

    Article  Google Scholar 

  • Schneiderman, B. (1998). Designing the user interface: Strategies for effective human–computer interaction. Boston, MA: Addison-Wesley.

    Google Scholar 

  • Segel, E. (2010). Narrative visualization: Telling stories with data. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1139–1148.

    Article  Google Scholar 

  • Shannon, P., Markiel, A., Ozier, W., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  Google Scholar 

  • Sofia, H. D., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F., & Miller, N. E. (2001). Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Research, 29(5), 1097–1106.

    Article  Google Scholar 

  • Spence, B. (2000). Information visualization. New York, NY: ACM Press.

    Google Scholar 

  • Stasko, J., Görg, C., & Liu, Z. (2008). Jigsaw: supporting investigative analysis through interactive visualization. Information Visualization, 7(2), 118–132.

    Article  Google Scholar 

  • Su, A. I., Cooke, M. P., Ching, K. A., Hakak, Y., Walker, J. R., Wiltshire, T., et al. (2002). Large-scale analysis of the human and mouse transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4465–4470.

    Article  Google Scholar 

  • Su, A. I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K. A., Block, D., et al. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6062–6067.

    Article  Google Scholar 

  • Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. The Journal of Machine Learning Research, 8, 1027–1061.

    MATH  Google Scholar 

  • Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, 62(6), 817–836.

    Article  Google Scholar 

  • Swayne, D. F., Cook, D., & Buja, A. (1998). XGobi: Interactive dynamic data visualization in the X window system. Journal of Computational and Graphical Statistics, 7(1), 113–130.

    Google Scholar 

  • Tao, D., Li, X., Wu, X., & Maybank, S. J. (2008). Geometric mean for subspace selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 260–274.

    Google Scholar 

  • Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039.

    Article  Google Scholar 

  • Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A Global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

    Article  Google Scholar 

  • The ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.

    Article  Google Scholar 

  • Thomas, J. J., & Cook, K. A. (2005). Illuminating the path: The R&D agenda for visual analytics. USA: National Visualization and Analytics Center.

    Google Scholar 

  • Thorvaldsdóttir, H., Robinson, J. T., & Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178–192.

    Article  Google Scholar 

  • Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17, 401–419.

    Article  MathSciNet  MATH  Google Scholar 

  • Törönen, P., Kolehmainen, M., & Castrén, E. (1999). Analysis of gene expression data using self-organizing maps. FEBS Letters, 451(2), 142–146.

    Article  Google Scholar 

  • Tory, M. (2005). Evaluating visualizations: Do expert reviews work? IEEE Computer Graphics and Applications, 25(5), 8–11.

    Article  Google Scholar 

  • Tufte, E. (1983). The visual display of quantitative information. Cheshire, Connecticut: Graphics Press.

    Google Scholar 

  • Tufte, E. (1990). Envisioning information. Cheshire, CT: Graphics Press.

    Google Scholar 

  • Tukey, J. (1977). Exploratory data analysis. Boston, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 5116–5121.

    Article  MATH  Google Scholar 

  • Ugulava, N. B., Gibney, B. R., & Jarrett, J. T. (2001a). Biotin synthase contains two distinct iron–sulfur cluster binding sites: Chemical and spectroelectrochemical analysis of iron–sulfur cluster interconversions. Biochemistry, 40(28), 8343–8351.

    Article  Google Scholar 

  • Ugulava, N. B., Sacanell, C. J., & Jarrett, J. T. (2001b). Spectroscopic changes during a single turnover of biotin synthase: Destruction of a [2Fe–2S] cluster accompanies sulfur insertion. Biochemistry, 40(28), 8352–8358.

    Article  Google Scholar 

  • Ugulava, N. B., Surerus, K. K., & Jarrett, J. T. (2002). Evidence from Mössbauer spectroscopy for distinct [2Fe–2S]2+ and [4Fe–4S]2+ cluster binding sites in biotin synthase from Escherichia coli. Journal of the American Chemistry Society, 124(31), 9050–9051.

    Article  Google Scholar 

  • Vaas, L. A. I., Sikorski, J., Michael, V., Göker, M., & Klenk, H. (2012). Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS ONE, 7(4), e34846.

    Article  Google Scholar 

  • van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. The Journal of Machine Learning Research, 9, 2579–2605.

    MATH  Google Scholar 

  • Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. (1995). Serial analysis of gene expression. Science, 270(5235), 484–487.

    Article  Google Scholar 

  • Venna, J., Peltonen, J., Nybo, K., Aidos, H., & Kaski, S. (2010). Information retrieval perspective to nonlinear dimensionality reduction for data visualization. The Journal of Machine Learning Research, 11, 451–490.

    MathSciNet  MATH  Google Scholar 

  • Venter, J. C., Adams, M. D., & Myers, E. W. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.

    Article  Google Scholar 

  • Vey, J. L., & Drennan, C. L. (2011). Structural insights into radical generation by the radical SAM superfamily. Chemical Reviews, 111(4), 2487–2506.

    Article  Google Scholar 

  • Walsby, C. J., Hong, W., Broderick, W. E., Cheek, J., Ortillo, D., Broderick, J. B., et al. (2002a). Electron–nuclear double resonance spectroscopic evidence that s-adenosylmethionine binds in contact with the catalytically active [4Fe–4S]+ cluster of pyruvate formate-lyase activating enzyme. Journal of the American Chemistry Society, 124(12), 3143–3151.

    Article  Google Scholar 

  • Walsby, C. J., Ortillo, D., Broderick, W. E., Broderick, J. B., & Hoffman, B. M. (2002b). An anchoring role for FeS clusters: Chelation of the amino acid moiety of s-adenosylmethionine to the unique iron site of the [4Fe–4S] cluster of pyruvate formate-lyase activating enzyme. Journal of the American Chemistry Society, 124(38), 11270–11271.

    Article  Google Scholar 

  • Ware, C. (2000). Information visualization: Perception for design. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Ware, C. (2004). Information visualization: Perception for design. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Wicks, P., Massagli, M., Frost, J., Brownstein, C., Okun, S., Vaughan, T., et al. (2010). Sharing health data for better outcomes on PatientsLikeMe. Journal of Medical Internet Research, 12(2), e19.

    Article  Google Scholar 

  • Yan, F., LaMarre, J. M., Röhrich, R., Wiesner, J., Jomaa, H., Mankin, A. S., et al. (2010). RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA. Journal of the American Chemistry Society, 132(11), 3953–3964.

    Article  Google Scholar 

  • Yi, J. S., Kang, Y. A., Stasko, J. T., & Jacko, J. A. (2007). Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1224–1231.

    Article  Google Scholar 

  • Yin, H. (2008). On multidimensional scaling and the embedding of self-organising maps. Neural Networks, 21(3), 160–169.

    Article  Google Scholar 

  • Yin, H., & Huang, W. (2010). Adaptive nonlinear manifolds and their applications to pattern recognition. Information Sciences, 180(14), 2649–2662.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, B., Schmoyer, D., Kirov, S., & Snoddy, J. (2004). GOTree machine (GOTM): A web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics, 5, 16.

    Article  Google Scholar 

  • Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., & Gruissem, W. (2004). GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiology, 136(1), 2621–2632.

    Article  Google Scholar 

Download references

Acknowledgments

This work is in part supported by the NSF I/UCRC Center for Visual Decision and Informatics (NSF IIP-1160960).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.C., Zhu, Y. & Chen, C. How are they different? A quantitative domain comparison of information visualization and data visualization (2000–2014). Scientometrics 107, 123–165 (2016). https://doi.org/10.1007/s11192-015-1830-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-015-1830-0

Keywords

Navigation