Skip to main content
Log in

Differentiating, describing, and visualizing scientific space: A novel approach to the analysis of published scientific abstracts

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This paper will develop and demonstrate a novel method for analyzing scientific indexes called Latent Semantic Differentiation. Using two distinct datasets comprised of scientific abstracts, it will demonstrate the procedure’s ability to identify the dominant themes, cluster the articles accordingly, visualize the results, and provide a qualitative description of each cluster. Combined, the analyses will highlight the utility of the procedure for scientific document indexing, structuring university departments, facilitating grant administration, and augmenting ongoing research on scientific citation. Because the procedure is extensible to any textual domain, there are numerous avenues for continued research both within the sciences and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuhn, T. S., The Structure of Scientific Revolutions, The University of Chicago Press, Chicago, 1996.

    Google Scholar 

  2. Braam, R. R., H. F. Moed, A. F. J. Vanraan, Mapping of science by combined cocitation and word analysis. 1. Structural aspects, Journal of the American Society for Information Science, 42(4) (1991) 233–251.

    Article  Google Scholar 

  3. Blute, M., The evolutionary ecology of science, Journal of Memetics-Evolutionary Models of Information Transmission, 7(1) (2003) 19.

    Google Scholar 

  4. Hull, D., Science as a Process, The University of Chicago Press, Chicago, 1988.

    Google Scholar 

  5. Leydesdorff, L., Theories of citation?, Scientometrics, 43(1) (1998) 5–25.

    Article  Google Scholar 

  6. White, H. D., K. W. Mccain, Visualizing a discipline: An author co-citation analysis of information science, 1972–1995, Journal of the American Society for Information Science, 49(4) (1998) 327–355.

    Google Scholar 

  7. Shiffrin, R. M., K. Borner, Mapping knowledge domains, Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl. 1) (2004) 5183–5185.

    Article  Google Scholar 

  8. Soderqvist, T., A. M. Silverstein, Studying leadership and subdisciplinary structure of scientific disciplines — Cluster-analysis of participation in scientific meetings, Scientometrics, 30(1) (1994) 243–258.

    Article  Google Scholar 

  9. Newman, M. E. J., Coauthorship networks and patterns of scientific collaboration, PNAS, 101(Suppl. 1) (2004) 5200–5205.

    Article  Google Scholar 

  10. Morris, S. A., G. G. Yen, Crossmaps: Visualization of overlapping relationships in collections of journal papers, PNAS, 101(Suppl. 1) (2004) 5291–5296.

    Article  Google Scholar 

  11. Hopcroft, J. J., Khan, O., Kulis, B., Selman, B., Tracking evolving communities in large linked networks, Proceedings of the National Academy of Sciences, 101(1) (2004) 5249–5253.

    Article  Google Scholar 

  12. Mika, P., T. Elfring, P. Groenewegen, Application of semantic technology for social network analysis in the sciences, Scientometrics, 68(1) (2006) 3–27.

    Article  Google Scholar 

  13. White, H. D., et al., User-controlled mapping of significant literatures, PNAS, 101(Suppl. 1) (2004) 5297–5302.

    Article  Google Scholar 

  14. Skupin, A., The world of geography: Visualizing a knowledge domain with cartographic means, PNAS, 101(Suppl. 1) (2004) 5274–5278.

    Article  Google Scholar 

  15. Menczer, F., Evolution of document networks, PNAS, 101(Suppl. 1) (2004) 5261–5265.

    Article  Google Scholar 

  16. Mane, K. K., K. Borner, Mapping topics and topic bursts in PNAS, PNAS, 101(Suppl. 1) (2004) 5287–5290.

    Article  Google Scholar 

  17. Hui, S. C., A. C. M., Document retrieval from a citation database using conceptual clustering and co-word analysis., Online Information Review, 28(1) (2004) 22–32.

    Article  Google Scholar 

  18. Henzinger, M., S. Lawrence, Extracting knowledge from the world wide web, PNAS, 101(Suppl. 1) (2004) 5186–5191.

    Article  Google Scholar 

  19. Ginsparg, P., et al., Mapping subsets of scholarly information, PNAS, 101(Suppl. 1) (2004) 5236–5240.

    Article  Google Scholar 

  20. Erosheva, E., S. Fienberg, J. Lafferty, Mixed-membership models of scientific publications, PNAS, 101(Suppl. 1) (2004) 5220–5227.

    Article  Google Scholar 

  21. Griffiths, T. L., M. Steyvers, Finding scientific topics, PNAS, 101(Suppl. 1) (2004) 5228–5235.

    Article  Google Scholar 

  22. Landauer, T. K., D. Laham, M. Derr From paragraph to graph: Latent semantic analysis for information visualization, Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl. 1) (2004) 5214–5219.

    Article  Google Scholar 

  23. Landauer, T. K., P. W. Foltz, D. Laham, An introduction to latent semantic analysis, Discourse Processes, 25(2&3) (1998) 259–284.

    Article  Google Scholar 

  24. Landauer, T. K., S. T. Dumais, A Solution to plato’s cave: The latent semantic analysis theory of acquisition, induction, and representation of knowledge, Psychological Review, 104(2) (1997) 211–240.

    Article  Google Scholar 

  25. Landauer, T. K., Learning and representing verbal meaning: The latent semantic analysis theory, Current Directions in Psychological Science, 7(5) (1998) 161–164.

    Article  Google Scholar 

  26. Best, M., R. Pocklington Meaning as use: Transmission fidelity and evolution in the NetNews, Journal of Theoretical Biology, 196(3) (1999) 389–395.

    Article  Google Scholar 

  27. Laham, D., “Latent Semantic Analysis Approaches to Categorization.” From http://scholar.google.com/url?sa=U&q=http://lsa.colorado.edu/categories.pdf, 1997.

  28. Berry, M. W., L. Wo, J. T. Giles, GTP (General Text Parser) Software for Text Mining. C. Warren Neel Conference on the new frontiers of statistical data mining and knowledge discovery, Knoxville, TX, 2002.

  29. Best, M., Microevolutionary Language Theory. Massachusetts Institute of Technology, City, 2000.

    Google Scholar 

  30. Landauer, T. K., Data Requirements for Conducting Latent Semantic Analysis. City, 2006.

  31. Shenk, M., Models for the Future of Anthropology. City, 2006.

  32. Alden Smith, E.Anthropological Schisms. City, 2006.

  33. Yanagisako, S., D. Segal, Welcoming Debate: Exploring Links and Disconnects Among the Quadrants. City, 2006.

  34. van Leeuwen, T.N., et al., Language biases in the coverage of the Science Citation Index and its consequences for international comparisons of national research performance, Scientometrics, 51(1) (2001) 335–346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli M. Blatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blatt, E.M. Differentiating, describing, and visualizing scientific space: A novel approach to the analysis of published scientific abstracts. Scientometrics 80, 385–406 (2009). https://doi.org/10.1007/s11192-008-2070-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-008-2070-3

Keywords

Navigation