Skip to main content
Log in

Optics: a bibliometric approach to detect emerging research domains and intellectual bases

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Optics is an important research domain both for its scientific interest and industrial applications. In this paper, we constructed a citation network of papers and performed topological clustering method to investigate the structure of research and to detect emerging research domains in optics. We found that optics consists of main five subclusters, optical communication, quantum optics, optical data processing, optical analysis and lasers. Then, we further investigated the detailed subcluster structures in it. By doing so, we detected some emerging research domains such as nonlinearity in photonic crystal fiber, broad band parametric amplifier, and in-vivo imaging techniques. We also discuss the distinction between research front and intellectual base in optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. D. Price, Little Science, Big Science, Columbia University Press, New York, 1963.

    Google Scholar 

  2. J. King, A Review of bibliometric and other science indicators and their role in research evaluation, Journal of Information Science, 13 (5) (1987) 261–276.

    Article  Google Scholar 

  3. E. C. M. Noyons, H. F. Moed, M. Luwel, Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study, Journal of the American Society for Information Science and Technology, 50 (2) (1999) 115–131.

    Article  Google Scholar 

  4. R. Rousseau, Journal evaluation: Technical and practical issues, Library Trends, 50 (3) (2002) 418–439.

    MathSciNet  Google Scholar 

  5. K. Börner, C. Chen, K. W. Boyack, Visualizing knowledge domains, Annual Review of Information Science and Technology, 37 (2003) 179–255.

    Article  Google Scholar 

  6. R. N. Kostoff, D. R. Toothman, H. J. Eberhart, J. A. Humenik, Text mining using database tomography and bibliometrics: a review, Technology Forecasting and Social Change, 68 (3) (2001) 223–253.

    Article  Google Scholar 

  7. K. W. Boyack, B. N. Wylie, G. S. Davidson, Domain visualization using VxInsight for science and technology management, Journal of the American Society for Information Science and Technology, 53 (2002) 764–774.

    Article  Google Scholar 

  8. C. Chen, T. Cribbin, R. Macredie, S. Morar, Visualizing and tracking the growth of competing paradigms: two case studies, Journal of the American Society for Information Science and Technology, 53 (2002) 678–689.

    Article  Google Scholar 

  9. H. Small, Tracking and predicting growth areas in science, Scientometrics, 68 (3) (2006) 595–610.

    Article  Google Scholar 

  10. A. Verbeek, K. Debackere, M. Luwel, E. Zimmermann, Measuring progress and evolution in science and technology. I: The multiple uses of bibliometric indicators, International Journal of Management Reviews, 4 (2002) 179–311.

    Article  Google Scholar 

  11. A. Kameoka, Evaluating research projects at TOSHIBA. designing a conceptual framework of evaluating research and technology development (RTD) programs, Scientometrics, 34 (1995) 427–439.

    Article  Google Scholar 

  12. M.-Y. Tsay, S.-J. Jou, S.-S. Ma, A bibliometric study of semiconductor literature, Scientometrics, 49 (2000) 491–509.

    Article  Google Scholar 

  13. M.-Y. Tsay, H. Xu, C.-W. Wu, Journal co-citation analysis of semiconductor literature, Scientometrics, 57 (2007) 7–25.

    Article  Google Scholar 

  14. M.-Y. Tsay, H. Xu, C.-W. Wu, Author co-citation analysis of semiconductor literature, Scientometrics, 58 (2003) 529–545.

    Article  Google Scholar 

  15. R. Furukawa, A. Goto, Core scientists and innovation in Japanese electronics companies, Scientometrics, 68 (2006) 227–240.

    Article  Google Scholar 

  16. M.-H. Huang, L.-Y. Chiang, D.-Z. Chen, Constructing a patent citation map using bibliographic coupling: A study of Taiwan’ high-tech companies, Scientometrics, 58 (2003) 489–506.

    Article  Google Scholar 

  17. R. Rojo, I. Gómez, Analysis of the Spanish scientific and technological output in the ICT sector, Scientometrics, 66 (2006) 101–121.

    Article  Google Scholar 

  18. J. Guan, N. Ma, A bibliometric study of China’s semiconductor literature compared with other major asian countries, Scientometrics, 70 (2007) 107–124.

    Article  Google Scholar 

  19. J. Guan, Y. He, Comparison and evaluation of domestic and international outputs in Information Science & Technology research of China, Scientometrics, 65 (2006) 215–244.

    Article  Google Scholar 

  20. V. Trimble, Productivity and impact of large optical telescopes, Scientometrics, 36 (2) (1996) 237–246.

    Article  Google Scholar 

  21. M. E. J. Newman, Fast algorithm for detecting community structure in networks, Physical Review, E 69 (2004) 066133.

    Google Scholar 

  22. M. E. J. Newman, M. Girvan, Finding and evaluating community structure in networks, Physical Review, E 69 (2004) 026113.

    Google Scholar 

  23. R. Klavans, K. W. Boyack, Identifying a better measure of relatedness for mapping science, Journal of the American Society for Information Science and Technology, 57 (2006) 251–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Takeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, Y., Kajikawa, Y. Optics: a bibliometric approach to detect emerging research domains and intellectual bases. Scientometrics 78, 543–558 (2009). https://doi.org/10.1007/s11192-007-2012-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-007-2012-5

Keywords

Navigation