Skip to main content
Log in

The pulsing structure of science: Ortega y Gasset, Saint Matthew, fractality and transfractality

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

By a new fractal/transfractal geometry of the Unified Scientometric Model, it is possible to demonstrate that science presents an oscillating or pulsing dynamic. It goes alternatively through two types of phases. Some phases are fractal, with crystalline networks, where the Matthew effect clearly manifests itself with regard to the most notable actors and those that provide the best contributions. The other phases are transfractal, with deformed, amorphous networks, in which the actors, considered mediocre, present greater capacity to restructure the network than the more renowned actors. The result after any transfractal deformation is a new crystalline fractal network. Behind this vision lies the Kuhn paradigms. As examples, the scientific fields of surfactants and autism have been analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Lotka, The frequency distribution of scientific productivity. Journal of the Washington Academy of Science, 16(12) (1926) 317–323.

    Google Scholar 

  2. D. J. de Solla Price, Science since Babylon, Yale University Press, New Haven, CT, 1961.

    Google Scholar 

  3. R. K. Merton, Matthew effect in Science. The reward and communication systems of science are considered. Science, 159(3810) (1968) 56–63.

    Article  Google Scholar 

  4. J. R. Cole, S. Cole, The Ortega hypothesis. Science, 178 (1972) 368–375.

    Article  Google Scholar 

  5. J. Ortega y Gasset, La rebelión de las masas, Editorial Tecnos (Grupo Anaya, S. A.), Madrid, 2003.

  6. E. Garfield, Citation analysis as a tool in journal evaluation. Science, 178(4060) (1972) 471–479.

    Article  Google Scholar 

  7. T. S. Kuhn, The Structure of Scientific Revolutions, University of Chicago Press, Chicago, 1962.

    Google Scholar 

  8. A. Rip, J. P. Courtial, Co-word maps of biotechnology: an example of cognitive scientometrics. Scientometrics, 6(6) (1984) 381–400.

    Article  Google Scholar 

  9. B. Latour, Nunca hemos sido modernos: Ensayo de antropología simétrica, Debate, Madrid, 1993.

    Google Scholar 

  10. M. Callon, J. Law, A. Rip, Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World, The McMillan Press LTD, London, 1986.

    Google Scholar 

  11. B. Latour, Ciencia en acción: Cómo seguir a los científicos e ingenieros a través de la sociedad, Labor, Barcelona, 1992.

    Google Scholar 

  12. Callon, M., Representing nature, representing culture. Conference pour l’ouverture du Centre for Social Theory and Technology, 1995.

  13. J. P. Courtial, L. Gourdon, A scientometric approach to autism based on translation sociology. Scientometrics, 40(2) (1997) 333–355.

    Article  Google Scholar 

  14. J. P. Courtial, L. Gourdon, Mapping the dynamics of research on autism or the cultural logic of science. Theory and Psychology, 9(5) (1999) 579–604.

    Google Scholar 

  15. B. Latour, Give me a laboratory and I will raise the world. In: K. Knorr-Cetina, M. Mulkay (Eds), Science Observed: Perspectives on the Social Study of Science. Sage, London, 1983, pp. 141–170.

    Google Scholar 

  16. R. Ruiz-Baños, Ciencimetría de redes. Análisis de la investigación internacional sobre Arqueología mediante el Método de las Palabras Asociadas (1980–1993). Ph. D. Thesis, Universidad, Granada, 1997.

  17. R. Ruiz-Baños, R. Bailón-Moreno, E. Jiménez-Contreras, J. P. Courtial, Structure and dynamics of scientific networks. Part 1: Fundamentals of the quantitative model of translation. Scientometrics, 44(2) (1999) 217–234.

    Article  Google Scholar 

  18. R. Ruiz-Baños, R. Bailón-Moreno, E. Jiménez-Contreras, J. P. Courtial, Structure and dynamics of scientific networks. Part 2: The new Zipf’s Law, the cocitations’s clusters and the model of the presence of key-words. Scientometrics, 44(2) (1999) 235–265.

    Article  Google Scholar 

  19. R. Ruiz-Baños, Las traducciones dinámicas de las series temáticas. Propuesta de una nueva clasificación. Actas del IV Congreso ISKO España EOCONSID’99. La Representación y Organización del Conocimiento en sus distintas perspectivas: su influencia en la Recuperación de la Información, Capítulo Español de la Sociedad Internacional para la Organización del Conocimiento (Ed.), Granada, 1999, pp. 193–198.

  20. B. Latour, S. Woolgar, La vida en el laboratorio. La construcción de los hechos científicos, Alianza, Madrid, 1995.

    Google Scholar 

  21. B. B. Mandelbrot, An informational theory of the stadistical structure of language. In: W. Jackson (Ed.), Communication Theory. London, Butterworths Scientific Publications, 1953, pp. 486–502.

    Google Scholar 

  22. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1977.

    Google Scholar 

  23. W. Sierpinski, Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donné. Comptes Rendus, (162) (1916) 629.

  24. B. B. Mandelbrot, Adaptation d’un message à la ligne de transmission. I & II. Comptes Rendus, 232 (1951) 1638–1640 & 2003–2005.

    MATH  MathSciNet  Google Scholar 

  25. B. B. Mandelbrot, Structure formelle des textes et communication (deux études). Word, 11 (1954) 424.

    Google Scholar 

  26. E. N. Lorenz, Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20 (1963) 130–141.

    Article  Google Scholar 

  27. G. Julia, Oeuvres de Gaston Julia, Gauthier-Villars, Paris, 1968.

    Google Scholar 

  28. A. F. J. Van Raan, Fractal geometry of information space as represented by co-citations clustering. Scientometrics, 20(3) (1990) 439–449.

    Article  Google Scholar 

  29. A. F. J. Van Raan, Fractal dimension of co-citations. Nature, 347 (1990) 626.

    Article  Google Scholar 

  30. R. Bailón-Moreno, Ingeniería del conocimiento y vigilancia tecnológica aplicada a la investigación en el campo de los tensioactivos. Desarrollo de un modelo ciencimétrico unificado. Ph. D. Thesis. Universidad de Granada, Granada, 2003.

    Google Scholar 

  31. R. Bailón-Moreno, E. Jurado-Alameda, R. Ruiz-Baños, J. P. Courtial, The unified scientometric model. Fractality and transfractality. Scientometrics, 63(2) (2005) 231–257.

    Article  Google Scholar 

  32. R. Bailón-Moreno, E. Jurado-Alameda, R. Ruiz-Baños, J. P. Courtial, Analysis of the scientific field of physical chemistry of surfactants with the Unified Scientometric Model. Fit of relational and activity indicators. Scientometrics, 63(2) (2005) 259–276.

    Article  Google Scholar 

  33. D. J. de Solla Price, A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5–6) (1976) 292–306.

    Google Scholar 

  34. A. Bookstein, Informetric distributions, Part II: Resilience to ambiguity. Journal of the American Society for information Science, 41 (1990) 376–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Bailón-Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailón-Moreno, R., Jurado-Alameda, E., Ruiz-Baños, R. et al. The pulsing structure of science: Ortega y Gasset, Saint Matthew, fractality and transfractality. Scientometrics 71, 3–24 (2007). https://doi.org/10.1007/s11192-007-1600-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-007-1600-8

Keywords

Navigation