Skip to main content
Log in

Method for the improved semiempirical description of intermolecular interactions of biomolecules and their fragments

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A new method was proposed for the improvement of the semiempirical (PM3, etc. levels of theory) description of intermolecular potential energy surfaces in biomolecules, primarily hydrophobic dispersion-type interactions. The intermolecular interaction energy calculated by the PM3 method is supplemented with the sum of atom-atom corrections represented in a physically meaningful functional form. The corresponding empirical parameters were selected by the least-squares procedure minimizing the root-mean-square deviation of the intermolecular interaction energies from the reference values calculated by the high-accuracy ab initio MP2 method with the quadruple zeta aug-cc-pVTZ basis set. The empirical parameters depend on the valence environment of atoms. The root-mean-square deviation for 74079 reference calculations of small-molecule dimers (with molecular fragments typical of docking complexes) is ∼1.6 kJ mol−1, being about 2.5 times lower than that obtained from conventional PM3 calculations (∼4.0 kJ mol−1). It is important to take into account weak intermolecular atom-atom pairwise interactions because there is a lot of such interacting pairs in biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. P. Stewart, J. Comp. Chem., 1991, 12, 320.

    Article  CAS  Google Scholar 

  2. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.

    Article  CAS  Google Scholar 

  3. G. B. Rocha, O. R. Freire, A. M. Simas, J. J. P. Stewart, J. Comput. Chem., 2006, 27, 1101.

    Article  CAS  Google Scholar 

  4. J. J. P. Stewart, J. Mol. Model., 2004, 10, 6.

    Article  CAS  Google Scholar 

  5. J. J. P. Stewart, J. Mol. Model., 2007, 13, 1173.

    Article  CAS  Google Scholar 

  6. J. P. McNamara, I. H. Hillier, Phys. Chem. Chem. Phys., 2007, 9, 2362.

    Article  CAS  Google Scholar 

  7. G. Monard, M. I. Bernal-Uruchurtu, A. van der Vaart, K. M. Merz, M. F. Ruiz-Lopez, J. Phys. Chem. A, 2005, 109, 3425.

    Article  CAS  Google Scholar 

  8. M. I. Bernal-Uruchurtu, M. F. Ruiz-Lopez, Chem. Phys. Lett., 2000, 330, 118.

    Article  CAS  Google Scholar 

  9. W. Harb, M. I. Bernal-Uruchurtu, M. F. Ruiz-Lopez, Theor. Chem. Acc., 2004, 112, 204.

    Article  CAS  Google Scholar 

  10. M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, E. Kaxiras, J. Chem. Phys., 2001, 114, 5149.

    Article  CAS  Google Scholar 

  11. R. Sharma, J. P. McNamara, R. K. Raju, M. A. Vincent, I. H. Hillier, C. A. Morgado, Phys. Chem. Chem. Phys., 2008, 10, 2767.

    Article  CAS  Google Scholar 

  12. P. Jurecka, J. Cerny, P. Hobza, D. R. Salahub, J. Comput. Chem., 2007, 28, 555.

    Article  CAS  Google Scholar 

  13. Y. Bouteiller, J. C. Poully, C. Desfranois, G. Grgoire, J. Phys. Chem. A, 2009, 113, 6301.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Anikin.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 12–16, January, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anikin, N.A., Bugaenko, V.L., Kuzminskii, M.B. et al. Method for the improved semiempirical description of intermolecular interactions of biomolecules and their fragments. Russ Chem Bull 61, 12–16 (2012). https://doi.org/10.1007/s11172-012-0002-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-012-0002-0

Key words

Navigation