Skip to main content

Advertisement

Log in

Visible light-induced conversion of biomass-derived chemicals integrated with hydrogen evolution over 2D Ni2P–graphene–TiO2

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Highly selective photocatalytic conversion of biomass-derived chemicals into value-added chemicals and clean hydrogen energy under mild conditions by simultaneously utilizing photogenerated holes and electrons is in line with the theme of sustainable development of green chemistry. Herein, a two-dimensional (2D) heterostructure of ternary Ni2P–graphene–lepidocrocite TiO2 (NPG–TiO2) with intimately interfacial contact has been successfully fabricated, which exhibits significantly elevated photocatalytic performance toward coevolution of benzaldehyde (2.17 mmol/h/g) and hydrogen (1.97 mmol/h/g) from biomass-derived benzyl alcohol in aqueous solution under the visible light irradiation. Mechanistic studies reveal that in this ternary heterostructure, graphene serves as an electron relay mediator to facilitate the flow of electrons from TiO2 to Ni2P due to its inherent electrical conductivity, and the Ni2P provides the active sites for photocatalytic proton reduction to hydrogen. It is anticipated that this work would make a contribution to rational design of 2D flat-structured multi-component photocatalysts for selective conversion of biomass-derived chemicals coupled with hydrogen evolution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Liu, Z.-R. Tang, Y. Sun, J. Colmenares, Y.-J. Xu, Chem. Soc. Rev. 44, 5053 (2015)

    CAS  PubMed  Google Scholar 

  2. M. Meng, Y. Fu, X. Wang, J. Clean. Prod. 177, 752 (2018)

    Google Scholar 

  3. M. Ghiassee, M. Rezaei, F. Meshkani, S. Mobini, Res. Chem. Intermed. 45, 4501 (2019)

    CAS  Google Scholar 

  4. N. Zhang, M.-Y. Qi, L. Yuan, X. Fu, Z.-R. Tang, J. Gong, Y.-J. Xu, Angew. Chem. Int. Ed. 58, 10003 (2019)

    CAS  Google Scholar 

  5. G. Lan, Y.-Y. Zhu, S.S. Veroneau, Z. Xu, D. Micheroni, W. Lin, J. Am. Chem. Soc. 140, 5326 (2018)

    CAS  PubMed  Google Scholar 

  6. Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48, 2109 (2019)

    CAS  PubMed  Google Scholar 

  7. Y.-H. Li, M.-Y. Qi, J.-Y. Li, Z.-R. Tang, Y.-J. Xu, Appl. Catal. B 257, 117934 (2019)

    CAS  Google Scholar 

  8. M. Zhukovskyi, H. Yashan, M. Kuno, Res. Chem. Intermed. 45, 4249 (2019)

    CAS  Google Scholar 

  9. G. Han, Y.-H. Jin, R.A. Burgess, N.E. Dickenson, X.-M. Cao, Y. Sun, J. Am. Chem. Soc. 139, 15584 (2017)

    CAS  PubMed  Google Scholar 

  10. N. Luo, T. Montini, J. Zhang, P. Fornasiero, E. Fonda, T. Hou, W. Nie, J. Lu, J. Liu, M. Heggen, L. Lin, C. Ma, M. Wang, F. Fan, S. Jin, F. Wang, Nat. Energy 4, 575 (2019)

    CAS  Google Scholar 

  11. D.W. Wakerley, M.F. Kuehnel, K.L. Orchard, K.H. Ly, T.E. Rosser, E. Reisner, Nat. Energy 2, 17021 (2017)

    CAS  Google Scholar 

  12. P. Zhang, Y.-J. Guo, J. Chen, Y.-R. Zhao, J. Chang, H. Junge, M. Beller, Y. Li, Nat. Catal. 1, 332 (2018)

    CAS  Google Scholar 

  13. M.F. Kuehnel, E. Reisner, Angew. Chem. Int. Ed. 57, 3290 (2018)

    CAS  Google Scholar 

  14. M. Latorre-Sánchez, A. Primo, H. García, Angew. Chem. Int. Ed. 52, 11813 (2013)

    Google Scholar 

  15. S.-H. Li, S. Liu, J.C. Colmenares, Y.-J. Xu, Green Chem. 18, 594 (2016)

    Google Scholar 

  16. W.-J. Liu, H. Jiang, H.-Q. Yu, Energy Environ. Sci. 12, 1751 (2019)

    CAS  Google Scholar 

  17. N. Luo, M. Wang, H. Li, J. Zhang, H. Liu, F. Wang, ACS Catal. 6, 7716 (2016)

    CAS  Google Scholar 

  18. B. Zhou, J. Song, Z. Zhang, Z. Jiang, P. Zhang, B. Han, Green Chem. 19, 1075 (2017)

    CAS  Google Scholar 

  19. X. Liu, X. Duan, W. Wei, S. Wang, B.-J. Ni, Green Chem. 21, 4266 (2019)

    CAS  Google Scholar 

  20. S. Xu, P. Zhou, Z. Zhang, C. Yang, B. Zhang, K. Deng, S. Bottle, H. Zhu, J. Am. Chem. Soc. 139, 14775 (2017)

    CAS  PubMed  Google Scholar 

  21. S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue, Y. Sakata, J. Catal. 274, 76 (2010)

    CAS  Google Scholar 

  22. X. Wu, X. Fan, S. Xie, J. Lin, J. Cheng, Q. Zhang, L. Chen, Y. Wang, Nat. Catal. 1, 772 (2018)

    CAS  Google Scholar 

  23. X. Wu, S. Xie, C. Liu, C. Zhou, J. Lin, J. Kang, Q. Zhang, Z. Wang, Y. Wang, ACS Catal. 9, 8443 (2019)

    CAS  Google Scholar 

  24. D. Jiang, X. Chen, Z. Zhang, L. Zhang, Y. Wang, Z. Sun, R.M. Irfan, P. Du, J. Catal. 357, 147 (2018)

    Google Scholar 

  25. H.-F. Ye, R. Shi, X. Yang, W.-F. Fu, Y. Chen, Appl. Catal. B 233, 70 (2018)

    CAS  Google Scholar 

  26. X. Xie, N. Zhang, Z.-R. Tang, M. Anpo, Y.-J. Xu, Appl. Catal. B 237, 43 (2018)

    CAS  Google Scholar 

  27. Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang, Y. Wang, C. Zhu, Z. Cao, G. Wang, H. Wan, Nat. Commun. 4, 2141 (2013)

    PubMed  Google Scholar 

  28. S.L. Wang, X. Luo, X. Zhou, Y. Zhu, X. Chi, W. Chen, K. Wu, Z. Liu, S.Y. Quek, G.Q. Xu, J. Am. Chem. Soc. 139, 15414 (2017)

    CAS  PubMed  Google Scholar 

  29. L. Yuan, K.-Q. Lu, F. Zhang, X. Fu, Y.-J. Xu, Appl. Catal. B 237, 424 (2018)

    CAS  Google Scholar 

  30. N. Zhang, Y. Zhang, X. Pan, M.-Q. Yang, Y.-J. Xu, J. Phys. Chem. C 116, 18023 (2012)

    CAS  Google Scholar 

  31. Y. Chen, X. Xie, X. Xin, Z.-R. Tang, Y.-J. Xu, ACS Nano 13, 295 (2019)

    CAS  PubMed  Google Scholar 

  32. S. Bai, J. Ge, L. Wang, M. Gong, M. Deng, Q. Kong, L. Song, J. Jiang, Q. Zhang, Y. Luo, Y. Xie, Y. Xiong, Adv. Mater. 26, 5689 (2014)

    CAS  PubMed  Google Scholar 

  33. A. Indra, A. Acharjya, P.W. Menezes, C. Merschjann, D. Hollmann, M. Schwarze, M. Aktas, A. Friedrich, S. Lochbrunner, A. Thomas, M. Driess, Angew. Chem. Int. Ed. 56, 1653 (2017)

    CAS  Google Scholar 

  34. E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, J. Am. Chem. Soc. 135, 9267 (2013)

    CAS  Google Scholar 

  35. Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 53, 6710 (2014)

    CAS  Google Scholar 

  36. Z. Qin, F. Xue, Y. Chen, S. Shen, L. Guo, Appl. Catal. B 217, 551 (2017)

    CAS  Google Scholar 

  37. S.-H. Li, N. Zhang, X. Xie, R. Luque, Y.-J. Xu, Angew. Chem. Int. Ed. 57, 13082 (2018)

    CAS  Google Scholar 

  38. P. Ye, X. Liu, J. Iocozzia, Y. Yuan, L. Gu, G. Xu, Z. Lin, J. Mater. Chem. A 5, 8493 (2017)

    CAS  Google Scholar 

  39. Y.-J. Yuan, Z.-J. Ye, H.-W. Lu, B. Hu, Y.-H. Li, D.-Q. Chen, J.-S. Zhong, Z.-T. Yu, Z.-G. Zou, ACS Catal. 6, 532 (2015)

    Google Scholar 

  40. T. Hu, K. Dai, J. Zhang, G. Zhu, C. Liang, Appl. Surf. Sci. 481, 1385 (2019)

    CAS  Google Scholar 

  41. J. Wen, Z. Feng, H. Liu, T. Chen, Y. Yang, S. Li, S. Sheng, G. Fang, Appl. Surf. Sci. 485, 462 (2019)

    CAS  Google Scholar 

  42. X.-Y. Zhang, B.-Y. Guo, Q.-W. Chen, B. Dong, J.-Q. Zhang, J.-F. Qin, J.-Y. Xie, M. Yang, L. Wang, Y.-M. Chai, C.-G. Liu, Int. J. Hydrog. Energy 44, 14908 (2019)

    CAS  Google Scholar 

  43. Y. Zhang, J. Xu, J. Xia, F. Zhang, Z. Wang, ACS Appl. Mater. Interfaces 10, 39151 (2018)

    CAS  PubMed  Google Scholar 

  44. S.B. Patil, H.J. Kim, H.-K. Lim, S.M. Oh, J. Kim, J. Shin, H. Kim, J.W. Choi, S.-J. Hwang, ACS Energy Lett. 3, 412 (2018)

    CAS  Google Scholar 

  45. T. Gao, P. Norby, H. Okamoto, H. Fjellvåg, Inorg. Chem. 48, 9409 (2009)

    CAS  PubMed  Google Scholar 

  46. Y. Chao, J. Lai, Y. Yang, P. Zhou, Y. Zhang, Z. Mu, S. Li, J. Zheng, Z. Zhu, Y. Tan, Catal. Sci. Technol. 8, 3372 (2018)

    CAS  Google Scholar 

  47. K. Wu, P. Wu, J. Zhu, C. Liu, X. Dong, J. Wu, G. Meng, K. Xu, J. Hou, Z. Liu, X. Guo, Chem. Eng. J. 360, 221 (2019)

    CAS  Google Scholar 

  48. C. Han, M.-Y. Qi, Z.-R. Tang, J. Gong, Y.-J. Xu, Nano Today 27, 48 (2019)

    CAS  Google Scholar 

  49. N. Zhang, C. Han, X. Fu, Y.-J. Xu, Chem 4, 1832 (2018)

    CAS  Google Scholar 

  50. C. Han, N. Zhang, Y.-J. Xu, Nano Today 11, 351 (2016)

    CAS  Google Scholar 

  51. N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Chem. Rev. 115, 10307 (2015)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support from the National Natural Science Foundation of China (NSFC) (21872029, U1463204, 21173045), the Award Program for Minjiang Scholar Professorship, the Natural Science Foundation (NSF) of Fujian Province for Distinguished Young Investigator Rolling Grant (2017J07002), the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (NO. 2014A05), the 1st Program of Fujian Province for Top Creative Young Talents and the Program for Returned High-Level Overseas Chinese Scholars of Fujian Province is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Jun Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JY., Xin, X., Li, YH. et al. Visible light-induced conversion of biomass-derived chemicals integrated with hydrogen evolution over 2D Ni2P–graphene–TiO2. Res Chem Intermed 45, 5935–5946 (2019). https://doi.org/10.1007/s11164-019-04011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04011-y

Keywords

Navigation