Skip to main content

Advertisement

Log in

Selective hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol over Ni/γ-Al2O3 catalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A series of nickel-based catalysts (with <5 nm Ni particle size) with γ-alumina as a support (x wt% Ni/γ-Al2O3, x represents the Ni loading amount) were synthesized by the impregnation method, which was successfully applied for the catalytic hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol. The effects of reaction time, reaction temperature, nickel loading amount, solvent, and hydrogen pressure on conversion of furfural alcohol as well as selectivity for tetrahydrofurfuryl alcohol were investigated systematically. The conversion of furfural alcohol over 15 wt% Ni/γ-Al2O3 was up to 99.8 % with a selectivity of 99.5 % toward tetrahydrofurfuryl alcohol, when the reaction was carried out at 353 K with an initial H2 pressure of 4.0 MPa and reaction time of 2 h. In addition, there was an increase of turnover frequency (TOF) value with the decrease of Ni particle size. The features of the Ni/γ-Al2O3 catalysts were investigated by characterization of XRD, TPR, BET, and SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106, 4044 (2006)

    Article  CAS  Google Scholar 

  2. P. Gallezot, Chem. Soc. Rev. 41, 1538 (2012)

    Article  CAS  Google Scholar 

  3. I. Delidovich, K. Leonhard, R. Palkovits, Energy Environ. Sci. 7, 2803 (2014)

    Article  CAS  Google Scholar 

  4. R.A. Sheldon, Green Chem. 16, 950 (2014)

    Article  CAS  Google Scholar 

  5. R. Karinen, K. Vilonen, M. Niemela, ChemSusChem 4, 1002 (2011)

    Article  CAS  Google Scholar 

  6. L. Hu, G. Zhao, W.W. Hao, X. Tang, Y. Sun, L. Lin, S.J. Liu, RSC Adv. 2, 11184 (2012)

    Article  CAS  Google Scholar 

  7. I. Agirrezabal-Telleria, I. Gandarias, P.L. Arias, Catal. Today 234, 42 (2014)

    Article  CAS  Google Scholar 

  8. H. Li, Q.Y. Zhang, P.S. Bhadury, S. Yang, Curr. Org. Chem. 18, 547 (2014)

    Article  CAS  Google Scholar 

  9. S.P. Teong, G.S. Yi, Y.G. Zhang, Green Chem. 16, 2015 (2014)

    Article  CAS  Google Scholar 

  10. R.F. Perez, M.A. Fraga, Green Chem. 16, 3942 (2014)

    Article  CAS  Google Scholar 

  11. Y. Nakagawa, H. Nakazawa, H. Watanabe, K. Tomishige, ChemCatChem 4, 1791–1797 (2012)

    Article  CAS  Google Scholar 

  12. Y. Nakagawa, K. Tomishige, Catal. Commun. 12, 154–156 (2010)

    Article  CAS  Google Scholar 

  13. Y. Nakagawa, K. Takada, M. Tamura, K. Tomishige, ACS Catal. 4, 2718–2726 (2014)

    Article  CAS  Google Scholar 

  14. S. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Green Chem. 16, 617–626 (2014)

    Article  Google Scholar 

  15. S. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Catal. Sci. Technol. 4, 2535 (2014)

    Article  CAS  Google Scholar 

  16. R.S. Rao, R.T.K. Baker, M. Vannice, Catal. Lett. 60, 51 (1999)

    Article  CAS  Google Scholar 

  17. N. Merat, C. Godawa, A. Gaset, J. Chem. Technol. Biotechnol. 48, 145 (1990)

    Article  CAS  Google Scholar 

  18. O. Levenspiel, Chemical reaction engineering, vol. 25, 2nd edn. (Wiley, New York, 1972), p. 265

    Google Scholar 

  19. A. Corma, S. Iborra, A. Velty, Chem. Rev. 107, 2411 (2007)

    Article  CAS  Google Scholar 

  20. N. Merat, C. Godawa, A. Gaset, Chem. Technol. Biotechnol. 48, 145 (1990)

    Article  CAS  Google Scholar 

  21. H.P. Thomas, C.L. Wilson, J. Am. Chem. Soc. 73, 4803 (1951)

    Article  CAS  Google Scholar 

  22. H.Y. Zheng, Y.L. Zhua, B.T. Teng, Z.Q. Bai, C.H. Zhang, H.W. Xiang, Y.W. Li, Mol J. Catal. A Chem. 246, 18 (2006)

    Article  CAS  Google Scholar 

  23. W.H. Bagnall, E.P. Goodings, C.L. Wilson, J. Am. Chem. Soc. 73, 4794 (1951)

    Article  CAS  Google Scholar 

  24. E.P. Goodings, C.L. Wilson, J. Am. Chem. Soc. 73, 4798 (1951)

    Article  CAS  Google Scholar 

  25. E.P. Goodings, C.L. Wilson, J. Am. Chem. Soc. 73, 4801 (1951)

    Article  CAS  Google Scholar 

  26. S. Sato, R. Takahashi, N. Yamamoto, E. Kaneko, H. Inoue, Appl. Catal. A Gen. 334, 84 (2008)

    Article  CAS  Google Scholar 

  27. F. Sato, H. Okazaki, S. Sato, Appl. Catal. A Gen. 419, 41 (2012)

    Article  Google Scholar 

  28. F. Sato, S. Sato, Catal. Commun. 27, 129 (2012)

    Article  CAS  Google Scholar 

  29. S. Koso, I. Furikado, A. Shimao, T. Miyazawa, K. Kunimori, K. Tomishige, Chem. Commun. 15, 2035 (2009)

    Article  Google Scholar 

  30. S. Koso, N. Ueda, Y. Shinmi, K. Okumura, T. Kizuka, K. Tomishige, J. Catal. 267, 89–92 (2009)

    Article  CAS  Google Scholar 

  31. Y. Nakagawa, M. Tamura, K. Tomishige, ACS Catal. 3, 2655–2668 (2013)

    Article  CAS  Google Scholar 

  32. Y. Nakagawa, K. Tomishige, Catal. Today 195, 136–143 (2012)

    Article  CAS  Google Scholar 

  33. Y. Nakagawa, M. Tamura, K. Tomishige, Catal. Surv. Asia 19, 249–256 (2015)

    Article  CAS  Google Scholar 

  34. L.E. Schniepp, H.H. Geller, J. Am. Chem. Soc. 68, 1646 (1946)

    Article  CAS  Google Scholar 

  35. H. Adkins, R. Connor, J. Am. Chem. Soc. 53, 1091 (1931)

    Article  CAS  Google Scholar 

  36. K. Chen, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, ChemCatChem 2, 547–555 (2010)

    Article  Google Scholar 

  37. S. Koso, Y. Nakagawa, K. Tomishige, J. Catal. 280, 221–229 (2011)

    Article  CAS  Google Scholar 

  38. S. Koso, H. Watanabe, K. Okumura, Y. Nakagawa, K. Tomishige, Appl. Catal. B Environ. 111–112, 27–37 (2012)

    Article  Google Scholar 

  39. S. Koso, H. Watanabe, K. Okumura, Y. Nakagawa, K. Tomishige, J. Phys. Chem. C 116, 3079–3090 (2012)

    Article  CAS  Google Scholar 

  40. B. Aeijelts, G. Mul, M. Makkee, J. Moulijn, J. Catal. 243, 171–182 (2006)

    Article  Google Scholar 

  41. S. Winterle, A. Kraynov, J. Klankermayer, W. Leitner, M.A. Liauw, Chem. Ing. Tech. 82, 1211 (2010)

    Article  Google Scholar 

  42. M.A. Tike, V.V. Mahajani, Ind. Eng. Chem. Res. 46, 3275 (2007)

    Article  CAS  Google Scholar 

  43. X.C. Chen, W. Sun, N. Xiao, J.Y. Yan, S.W. Liu, J. Chem. Eng. 126, 5 (2007)

    Article  CAS  Google Scholar 

  44. M.V. Rajashekharam, J. Sci. Ind. Res. 56, 595 (1997)

    CAS  Google Scholar 

  45. H.R. Reinhoudt, R. Troost, A.D. van Langeveld, J.A.R. van Veen, S.T. Sie, J.A. Moulijn, J. Catal. 203, 509 (2001)

    Article  CAS  Google Scholar 

  46. S. Sitthisa, D.E. Resasco, Catal. Lett. 141, 784–791 (2011)

    Article  CAS  Google Scholar 

  47. X. Kong, Y. Zhu, H. Zheng, X. Li, Y. Zhu, Y.W. Li, ACS Catal. 5, 5914 (2015)

    Article  CAS  Google Scholar 

  48. M.P. GonzalezMarcos, J.I. GutierrezOrtiz, C.G. deElguea, J.A. Delgado, J.R. GonzalezVelasco, Appl. Catal. A 162, 269–280 (1997)

    Article  Google Scholar 

  49. M.H. Zhou, H.Y. Zhu, L. Niu, G.M. Xiao, R. Xiao, Catal. Lett. 144, 235 (2014)

    Article  CAS  Google Scholar 

  50. T. Hou, L.X. Yuan, T.Q. Ye, L. Gong, J. Tu, M. Yamamoto, Y. Torimoto, Q.X. Li, Int. J. Hydrogen Energy 34, 9095 (2009)

    Article  CAS  Google Scholar 

  51. C. Wu, L. Wang, P.T. Williams, J. Shi, J. Huang, Appl. Catal. B Environ. 108, 6 (2011)

    Article  Google Scholar 

  52. Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng, Appl. Catal. B 101, 431–440 (2011)

    Article  CAS  Google Scholar 

  53. C. Rudolf, B. Dragoi, A. Ungureanu, A. Chirieac, S. Royer, A. Nastro, E. Dumitriu, Catal. Sci. Technol. 4, 179–189 (2014)

    Article  CAS  Google Scholar 

  54. Z. Hou, O. Yokota, T. Tanaka, T. Yashima, Appl. Catal. A Gen. 253, 381 (2003)

    Article  CAS  Google Scholar 

  55. X. Kong, R. Zheng, Y. Zhu, G. Ding, Y. Zhu, Y.W. Li, Green Chem. 17, 2504–2514 (2015)

    Article  CAS  Google Scholar 

  56. M. Manikandan, A.K. Venugopal, K. Prabu, R.K. Jha, R. Thirumalaiswamy, J. Mol. Catal. A: Chem. 417, 153–162 (2016)

    Article  CAS  Google Scholar 

  57. M. Montes, C.P. deBosscheyde, B.K. Hodnett, F. Delannay, P. Grange, B. Delmon, Appl. Catal. 12, 309–330 (1984)

    Article  CAS  Google Scholar 

  58. C. Louis, Z.X. Cheng, M. Che, J. Phys. Chem. 97, 5703–5712 (1993)

    Article  CAS  Google Scholar 

  59. M. Che, C.O. Bennett, Adv. Catal. 36, 55–172 (1989)

    CAS  Google Scholar 

  60. E.J. Shin, M.A. Keane, Ind. Eng. Chem. Res. 39, 883–892 (2000)

    Article  CAS  Google Scholar 

  61. X.P. Ouyang, X.Z. Huang, Y. Zhu, X.Q. Qiu, Energy Fuels 29, 5835 (2015)

    Article  CAS  Google Scholar 

  62. H.Y. Zhu, M.H. Zhou, Z. Zou, G.M. Xiao, R. Xiao, Korean J. Chem. Eng. 31, 593 (2014)

    Article  CAS  Google Scholar 

  63. S. Bhogeswararao, D. Srinivas, J. Catal. 327, 65–77 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21276050 and 21406034), Fundamental Research Funds for the Central Universities (No. 3207045414), Key Laboratory Open Fund of Jiangsu Province (JSBEM201409), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, S., Wang, Y., Zhu, W. et al. Selective hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol over Ni/γ-Al2O3 catalysts. Res Chem Intermed 43, 1179–1195 (2017). https://doi.org/10.1007/s11164-016-2691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2691-8

Keywords

Navigation