Skip to main content
Log in

Microporous carbon fibers prepared from cellulose as efficient sorbents for removal of chlorinated phenols

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Cellulose-based microporous carbon fibers (CFs) were evaluated for the adsorption of 2-Chlorophenol (CP), 2,4-Dichlorophenol (DCP), and 2,4,6-Trichlorophenol (TCP), which are persistent organic pollutants in wastewater. CFs with different surface area values were prepared by using ZnCl2 as a chemical activator, and the samples were characterized by BET, FTIR, SEM, PALS, Zeta potential, and pH titration analysis. The point of zero charge values for CF-1, CF-2, and CF-3 were found as 8.14, 6.79, and 7.01, respectively. The surface area of CFs were determined as 454 m2/g (CF-1), 760 m2/g (CF-2), and 1217 m2/g (CF-3), and PALS measurements at ambient temperature and vacuum indicated the effective pore diameter of about 0.6 nm for all samples. The adsorption of chlorophenols was examined at different solution pH, temperature, and contact time. At the optimum pH of 6.0, the DCP adsorption capacities of CFs, namely, CF-1, CF-2, and CF-3 were calculated as 29.27, 229.81, and 244.09 mg/g, respectively. The adsorption capacity of the CF-3 sample was found to be an ideal adsorbent for CPs removal from aqueous solutions. A comparison of the adsorption kinetic data was best described by the pseudo second-order and particle diffusion models. For the CF-2 sample, the initial sorption rates of CP, DCP, and TCP were found in the increasing order as 2.084, 32.23, and 43.63 mg/g min. Similar order of the sorption rates were also observed for CF-1 and CF-3 samples. The obtained results demonstrated the fact that among the CP homologues, TCP showed both a higher affinity and a higher diffusion rate for all CFs. The adsorption process was found to be exothermic, and the entropy values were positive, depicting that CPs were randomly distributed at the solid/solution interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.A.K. Rao, S. Singh, B.R. Singh, W. Khan, A.H. Naqvi, J. Environ. Chem. Eng. 2, 199–210 (2014)

    Article  CAS  Google Scholar 

  2. K.P. Singh, S. Gupta, P. Ojha, P. Rai, Environ. Sci. Pollut. Res. 20, 2271–2287 (2013)

    Article  CAS  Google Scholar 

  3. Q. Wen, T. Yang, S. Wang, Y. Chen, L. Cong, Y. Qu, J. Hazard. Mater. 244–245, 743–749 (2013)

    Article  Google Scholar 

  4. A. Bhatnagar, A.K. Minocha, E. Kumar, M. Sillanpää, B.-H. Jeon, Sep. Sci. Technol. 44, 3150–3169 (2009)

    Article  CAS  Google Scholar 

  5. N. Khanikar, K.G. Bhattacharyya, Chem. Eng. J. 233, 88–97 (2013)

    Article  CAS  Google Scholar 

  6. A. Mittal, D. Kaur, A. Malviya, J. Mittal, V.K. Gupta, J. Colloid Interface Sci. 337, 345–354 (2009)

    Article  CAS  Google Scholar 

  7. T.A. Saleh, V.K. Gupta, Environ. Sci. Pollut. Res. 19, 1224–1228 (2012)

    Article  CAS  Google Scholar 

  8. V.K. Gupta, S. Agarwal, T.A. Saleh, J. Hazard. Mater. 185, 17–23 (2011)

    Article  CAS  Google Scholar 

  9. M. Sathishkumar, A.R. Binupriya, D. Kavitha, R. Selvakumar, R. Jayabalan, J.G. Choi, S.E. Yun, Chem. Eng. J. 147, 265–271 (2009)

    Article  CAS  Google Scholar 

  10. E. Bilgin Simsek, B. Aytas, D. Duranoglu, U. Beker, A.W. Trochimczuk, Desalt. Water Treat. 57, 1–17 (2015)

    Google Scholar 

  11. J.P. Wang, H.M. Feng, H.Q. Yu, J. Hazard. Mater. 144, 200–207 (2007)

    Article  CAS  Google Scholar 

  12. Q.-S. Liu, T. Zheng, P. Wang, J.-P. Jiang, N. Li, Chem. Eng. J. 157, 348–356 (2010)

    Article  CAS  Google Scholar 

  13. X. Li, S. Chen, X. Fan, X. Quan, F. Tan, Y. Zhang, J. Gao, J. Colloid Interface Sci. 447, 120–127 (2015)

    Article  CAS  Google Scholar 

  14. Q. Lu, G.A. Sorial, J. Hazard. Mater. 167, 89–96 (2009)

    Article  CAS  Google Scholar 

  15. H. Ding, X. Li, J. Wang, X. Zhang, C. Chen, J. Environ. Sci. 43, 187–198 (2016)

    Article  Google Scholar 

  16. J. Xu, T. Sheng, Y. Hu, S.A. Baig, X. Lv, X. Xu, Chem. Eng. J. 219, 162–173 (2013)

    Article  CAS  Google Scholar 

  17. M.A. Salam, M. Mokhtar, S.N. Basahel, S.A. Al-Thabaiti, A.Y. Obaid, J. Alloys Compd. 500, 87–92 (2010)

    Article  CAS  Google Scholar 

  18. C. Wang, R. Ma, Q. Wu, M. Sun, Z. Wang, J. Chromatogr. A 1361, 60–66 (2014)

    Article  CAS  Google Scholar 

  19. T.A. Saleh, V.K. Gupta, Adv. Colloid Interface Sci. 211, 93–101 (2014)

    Article  CAS  Google Scholar 

  20. V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adv. Colloid Interface Sci. 193–194, 24–34 (2013)

    Article  Google Scholar 

  21. F. Helfferich, Ion Exchange (Dover, New York, 1995)

    Google Scholar 

  22. P. Kirkegaard, M. Eldrup, O.E. Mogensen, N.J. Pedersen, Comput. Phys. Commun. 23, 307–335 (1981)

    Article  CAS  Google Scholar 

  23. K.S. Liao, H. Chen, S. Awad, J.-P. Yuan, W.-S. Hung, K.-R. Lee, J.-Y. Lai, C.-C. Hu, Y.C. Jean, Macromolecules 44, 6818–6826 (2011)

    Article  CAS  Google Scholar 

  24. S. Biniak, M. Pakula, A. Swiatkowski, K. Kusmierek, G. Trykowski, React. Kinet. Mech. Catal. 114, 369–383 (2014)

    Article  Google Scholar 

  25. J. Zhang, J. Lei, H. Ju, C. Wang, Anal. Chim. Acta 786, 16–21 (2013)

    Article  CAS  Google Scholar 

  26. R. Hoseinzadeh Hesas, A. Arami-Niyaa, W.M.A. Wan Dauda, J.N. Sahu, J. Anal. Appl. Pyrol. 104, 176–184 (2013)

    Article  CAS  Google Scholar 

  27. A. Sharma, B.K. Lee, J. Environ. Manag. 165, 1–10 (2016)

    Article  CAS  Google Scholar 

  28. X. Li, W. Wang, J. Dou, J. Gao, S. Chen, Z. Quan, H. Zhao, J. Water. Process. Eng. 9, e14–e20 (2016)

    Article  Google Scholar 

  29. J. Bandara, J.A. Mielczarski, J. Kiwi, Appl. Catal. B Environ. 34, 307–320 (2001)

    Article  CAS  Google Scholar 

  30. B. Yang, Y. Liu, Z. Li, L. Lei, J. Zhou, Z. Zhang, Environ. Sci. Pollut. Res. 23, 1482–1491 (2016)

    Article  CAS  Google Scholar 

  31. H. Yuh-Shan, Scientometrics 59, 171–177 (2004)

    Article  Google Scholar 

  32. Y.S. Ho, G. McKay, Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  33. J. Fan, J. Zhang, C. Zhang, L. Ren, Q. Shi, Desalination 267, 139–146 (2011)

    Article  CAS  Google Scholar 

  34. C. Namasivayam, D. Kavitha, J. Hazard. Mater. B98, 257–274 (2003)

    Article  Google Scholar 

  35. O. Aktas, F. Cecen, J. Hazard. Mater. 141, 769–777 (2007)

    Article  CAS  Google Scholar 

  36. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, J. Hazard. Mater. 164, 473–482 (2009)

    Article  CAS  Google Scholar 

  37. B. Özkaya, J. Hazard. Mater. B129, 158–163 (2006)

    Article  Google Scholar 

  38. M. Radhika, K. Palanivelu, J. Hazard. Mater. B138, 116–124 (2006)

    Article  Google Scholar 

  39. F. Salvador, N. Martin-Sanchez, R. Sanchez-Hernandez, M.J. Sanchez-Montero, C. Izquierdo, Microporous Mesoporous Mater. 202, 277–296 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Bilgin Simsek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgin Simsek, E., Novak, I., Sausa, O. et al. Microporous carbon fibers prepared from cellulose as efficient sorbents for removal of chlorinated phenols. Res Chem Intermed 43, 503–522 (2017). https://doi.org/10.1007/s11164-016-2637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2637-1

Keywords

Navigation