Skip to main content
Log in

Near-infrared quantum cutting in Tb3+ and Yb3+-doped Y2O3 nanophosphors

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Properties of the quantum-cutting phosphors are dependent on various factors such as dopant concentration, crystallinity, homogeneity, particle size and surface morphology. Effective control of the above parameters can enhance the quantum-cutting ability of the phosphor material. Nano-sized particles of Y2O3:Tb3+,Yb3+ were prepared with a solution-based co-precipitation method and subsequent calcination. Effective control of the reaction parameters and doping concentration helped to produce uniform nanostructures with high quantum-cutting efficiency up to 181.1 %. The energy transfer mechanism between Tb3+ and Yb3+ was studied by considering their spectroscopic properties and time-resolved spectroscopy. The high efficiency and small particle size of the quantum-cutting phosphor Y2O3:Tb3+,Yb3+ make it a suitable candidate for its application in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q.Y. Zhang, X.Y. Huang, Prog. Mater. Sci. 55, 353 (2010)

    Article  CAS  Google Scholar 

  2. T. Trupke, M.A. Green, P. Wurfel, J. Appl. Phys. 92, 1668 (2002)

    Article  CAS  Google Scholar 

  3. W.G.J.H.M. van Sark, A. Meijerink, R.E.I. Schropp in Solar Spectrum Conversion for Photovoltaics Using Nanoparticles, Third Generation Photovoltaics, ed. by V. Fthenakis (In Tech, 2012), p. 1

  4. H. Lin, D.Q. Chen, Y.L. Yu, A.P. Yang, Y.S. Wang, Opt. Lett. 36, 876 (2011)

    Article  CAS  Google Scholar 

  5. Q.Y. Zhang, C.H. Yang, Z.H. Jiang, X.H. Ji, Appl. Phys. Lett. 90, 061914 (2007)

    Article  Google Scholar 

  6. A.P. Jadhav, A. Pawar, C.W. Kim, H.G. Cha, U. Pal, Y.S. Kang, J. Phys. Chem. C 113, 16652 (2009)

    Article  CAS  Google Scholar 

  7. F. Hanic, M. Hartmanova, G.G. Knab, A.A. Urusovskaya, K.S. Bagdasarov, Acta Crystallogr. B 40, 76 (1984)

    Article  Google Scholar 

  8. M. Klintenberg, S. Edvardsson, J.O. Thomas, J. Alloys Compd. 275, 174 (1998)

    Article  Google Scholar 

  9. P. Ayyub, V.R. Palkar, S. Chattopadhyay, M. Multani, Phys. Rev. B 51, 6135 (1995)

    Article  CAS  Google Scholar 

  10. L. van Pieterson, M. Heeroma, E.D. Heer, A. Meijerink, J. Lumin. 91, 177 (2000)

    Article  Google Scholar 

  11. P. Vergeer, T.J.H. Vlugt, M.H.F. Kox, M.I. den Hertog, J.P.J.M. van der Eerden, A. Meijerink, Phys. Rev. B 71, 014119 (2005)

    Article  Google Scholar 

  12. J.L. Yuan, X.Y. Zeng, J.T. Zhao, Z.J. Zhang, H.H. Chen, X.X. Yang, J. Phys. D Appl. Phys. 41, 105406 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the financial support from the Korea Institute of Science and Technology (KIST) institutional funding (Project No. 2E26120) and the international cooperation program managed by the National Research Foundation of Korea (NRF-2014K1A3A1A09063246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So-Hye Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, A.P., Khan, S., Kim, S.J. et al. Near-infrared quantum cutting in Tb3+ and Yb3+-doped Y2O3 nanophosphors. Res Chem Intermed 43, 3463–3471 (2017). https://doi.org/10.1007/s11164-016-2427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2427-9

Keywords

Navigation