Skip to main content

Advertisement

Log in

Synthesis, crystal structure, spectroscopic properties and DFT calculations of a new Schiff base-type Zinc(II) complex

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A new mononuclear Zn(II) complex, [Zn(L 2 )2]·CH3OH (HL 2  = 1-(2-{[(E)-3,5-dichloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Zn(II) acetate dihydrate with HL 1 (HL 1  = 2-(3,5-dichloro-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL 1 and its corresponding Zn(II) complex were characterized by infrared (IR), ultraviolet-visible light (UV–Vis) and emission spectroscopy, as well as by elemental analysis. The crystal structure of the complex has been determined by single-crystal X-ray diffraction (XRD). Each complex links two other molecules into an infinite one-dimensional (1-D) chain through intermolecular hydrogen bonds. Moreover, the calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies show the character of the ligand HL 1 and the Zn(II) complex. Time-dependent density functional theory (TDDFT) calculations were done on the optimised geometries to understand the electronic structure and spectral transition in the ligand and the Zn(II) complex.

Graphical abstract

A new mononuclear Zn(II) complex involving a Schiff base-type instead of an anticipated quinazoline complex has been synthesized and characterized structurally by spectroscopic methods. The crystal structure of the complex has been determined by single-crystal XRD. Each complex links two other molecules into an infinite 1-D chain through intermolecular hydrogen bonds. Moreover, the calculated HOMO and LUMO energies show the character of the ligand HL 1 and the Zn(II) complex. The TDDFT calculations were done on the optimised geometries to understand the electronic structure and spectral transition in the ligand and the Zn(II) complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, Science 341, 974–986 (2013)

    Article  CAS  Google Scholar 

  2. Z.H. Chohan, S.H. Sumrra, M.H. Youssoufi, T.B. Hadda, Eur. J. Med. Chem. 45, 2739–2747 (2010)

    Article  CAS  Google Scholar 

  3. H. Wu, D.F. Wang, J. Shi, S. Xue, M.L. Gao, J. Agric. Food Chem. 58, 5757–5762 (2010)

    Article  CAS  Google Scholar 

  4. L.F. Ma, C.P. Li, L.Y. Wang, M. Du, Cryst. Growth Des. 11, 3309–3312 (2011)

    Article  CAS  Google Scholar 

  5. X.Y. Zhou, B.R. Yu, Y.L. Guo, X.L. Tang, H.H. Zhang, W.S. Liu, Inorg. Chem. 49, 4002–4007 (2010)

    Article  CAS  Google Scholar 

  6. A.I. Sachin, S. Frank, J. Org. Chem. 77, 9352–9356 (2012)

    Article  Google Scholar 

  7. M.V. Gastel, C.C. Lu, K. Wieghardt, W. Lubitz, Inorg. Chem. 48, 2626–2632 (2009)

    Article  Google Scholar 

  8. Z.J. Zhang, P. Cui, X.Y. Chen, Ind. Eng. Chem. Res. 52, 16211–16219 (2013)

    Article  CAS  Google Scholar 

  9. W.S. Xia, C.H. Huang, D.J. Zhou, Langmuir 13, 80–84 (1997)

    Article  CAS  Google Scholar 

  10. S.T. Zhang, T.R. Li, B.D. Wang, Z.Y. Yang, J. Liu, Z.Y. Wang, W.K. Dong, Dalton Trans. 43, 2713–2717 (2014)

    Article  CAS  Google Scholar 

  11. W. Maret, Y. Li, Chem. Rev. 109, 4682–4707 (2009)

    Article  CAS  Google Scholar 

  12. I.M.A. Mundo, K.E. Siters, M.A. Fountain, J.R. Morrow, Inorg. Chem. 51, 5444–5457 (2012)

    Article  Google Scholar 

  13. H. Park, K.M. Merz Jr, J. Med. Chem. 48, 1630–1637 (2005)

    Article  CAS  Google Scholar 

  14. B.X. Wei, A.M. Randich, M.B. Pakrasi, H.B. Pakrasi, T.J. Smith, Biochemistry 46, 8734–8743 (2007)

    Article  CAS  Google Scholar 

  15. R. Alonso, A. Caballero, P.J. Campos, D. Sampedro, M.A. Rodríguez, Tetrahedron 66, 4469–4473 (2010)

    Article  CAS  Google Scholar 

  16. E.M. Olasik, K.B. Światkiewiz, E. Żurek, U. Krajewska, M. Różalski, T.J. Bartczak, Arch. Pharm. Med. Chem. 337, 239–246 (2004)

    Article  Google Scholar 

  17. J.M. Xiao, W. Zhang, Inorg. Chem. Commun. 12, 1175–1178 (2009)

    Article  CAS  Google Scholar 

  18. M. Kalanithi, M. Rajarajan, P. Tharmara, J. Coord. Chem. 64, 842–850 (2011)

    Article  CAS  Google Scholar 

  19. L.Q. Chai, G. Liu, Y.L. Zhang, J.J. Huang, J.F. Tong, J. Coord. Chem. 66, 3926–3938 (2013)

    Article  CAS  Google Scholar 

  20. L.Q. Chai, H.S. Zhang, J.J. Huang, Y.L. Zhang, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 661–669 (2015)

    Article  CAS  Google Scholar 

  21. L.Q. Chai, J.J. Huang, J.Y. Zhang, Y.X. Li, J. Coord. Chem. 68, 1224–1237 (2015)

    Article  CAS  Google Scholar 

  22. L.Q. Chai, Y.L. Zhang, K. Cui, Z.R. Wang, L.W. Zhang, Y.Z. Zhang, Z. Kristallogr, New. Cryst. Struct. 227, 153–154 (2012)

    CAS  Google Scholar 

  23. G.W.T.M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, O.Y. Stratmann, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian Inc., Gaussian 09, Revision A. 01 ed, (Wallingford, CT 2009). http://refhub.elsevier.com/S0925-4005(15)00769-8/sbref0210

  24. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  26. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270–283 (1985)

    Article  CAS  Google Scholar 

  27. W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284–298 (1985)

    Article  CAS  Google Scholar 

  28. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299–310 (1985)

    Article  CAS  Google Scholar 

  29. R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256, 454–464 (1996)

    Article  CAS  Google Scholar 

  30. R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 108, 8218–8224 (1998)

    Article  Google Scholar 

  31. M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108, 4439–4449 (1998)

    Article  CAS  Google Scholar 

  32. V. Barone, M. Cossi, J. Phys. Chem. A 102, 1995–2001 (1998)

    Article  CAS  Google Scholar 

  33. M. Cossi, V. Barone, J. Chem. Phys. 115, 4708–4717 (2001)

    Article  CAS  Google Scholar 

  34. M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24, 669–681 (2003)

    Article  CAS  Google Scholar 

  35. T. Lu, F.W. Chen, J. Comp. Chem. 33, 580–592 (2012)

    Article  Google Scholar 

  36. T. Lu, F.W. Chen, J. Mol. Graph. Model. 38, 314–323 (2012)

    Article  Google Scholar 

  37. G.M. Sheldrick, Acta Crystallogr. A 64, 112–122 (2008)

    Article  CAS  Google Scholar 

  38. G.M. Sheldrick, SHELXS-97 and SHELXL-97, Program for the Refinement of Crystal Structures (University of Göttingen, Germany, 1997)

    Google Scholar 

  39. M.M. Carthy, P.J. Gyiry, Polyhedron 19, 541–543 (2000)

    Article  Google Scholar 

  40. K. Das, A. Jana, S. Konar, S. Chatterjee, T.K. Mondal, A.K. Barik, S.K. Kar, J. Mol. Struct. 1048, 98–107 (2013)

    Article  CAS  Google Scholar 

  41. D. Kovala-Demertzi, V.N. Dokorou, J.P. Jasinski, A. Opolski, J. Wiecek, M. Zervou, M.A. Demertzis, J. Org. Chem. 690, 1800–1806 (2005)

    Article  CAS  Google Scholar 

  42. D. Hauchecorne, N. Nagels, B.J. van der Veken, W.A. Herrebout, Phys. Chem. Chem. Phys. 14, 681–690 (2012)

    Article  CAS  Google Scholar 

  43. L.Q. Chai, J.J. Huang, H.S. Zhang, Y.L. Zhang, J.Y. Zhang, Y.X. Li, Spectrochim. Acta Part A: Mol. Biomol. Spect. 131, 526–533 (2014)

    Article  CAS  Google Scholar 

  44. T.Z. Yu, K. Zhang, Y.L. Zhao, C.H. Yang, H. Zhang, L. Qian, D.W. Fan, W.K. Dong, L.L. Chen, Y.Q. Qiu, Inorg. Chim. Acta 361, 233–240 (2008)

    Article  CAS  Google Scholar 

  45. C.J. Dhanaraj, J. Johnson, J. Joseph, R.S. Joseyphus, J. Coord. Chem. 66, 1416–1450 (2013)

    Article  CAS  Google Scholar 

  46. M.K. Paria, J. Dinda, T.H. Lu, A.R. Paital, C. Sinha, Polyhedron 26, 4131–4140 (2007)

    Article  Google Scholar 

  47. T. Ghosh, B. Mondal, T. Ghosh, M. Sutradhar, G. Mukherjee, M.G.B. Drew, Inorg. Chim. Acta 360, 1753–1761 (2007)

    Article  CAS  Google Scholar 

  48. W.K. Dong, S.J. Xing, Y.X. Sun, L. Zhao, L. Q. Chai, X. H. Gao. J. Coord. Chem. 65, 1212–1220 (2012)

    Article  CAS  Google Scholar 

  49. S. Mandala, S. Chatterjeeb, R. Modaka, Y. Sikdara, B. Naskara, S. Goswamia, J. Coord. Chem. 67, 699–713 (2014)

    Article  Google Scholar 

  50. Y.H. Zhou, D.L. Sun, J. Tao, L.Q. Chen, Y.F. Huang, Y.K. Lia, Y. Cheng, J. Coord. Chem. 67, 2393–2404 (2014)

    Article  CAS  Google Scholar 

  51. Y.H. Zhou, W.Q. Wan, D.L. Sun, J. Tao, L. Zhang, X.W. Wei, Z. Anorg, Allg. Chem. 640, 249–253 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for the financial support by the Fundamental Research Funds for the Universities of Gansu Province (No. 2140152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan-Qin Chai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, LQ., Zhang, JY., Chen, LC. et al. Synthesis, crystal structure, spectroscopic properties and DFT calculations of a new Schiff base-type Zinc(II) complex. Res Chem Intermed 42, 3473–3488 (2016). https://doi.org/10.1007/s11164-015-2226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2226-8

Keywords

Navigation