Skip to main content
Log in

The significance of a second adsorption phase with weakly adsorbed species for the calculation of the surface concentrations of a mixture: methanol–DME and methanol–ethene adsorption in SAPO-34

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

With the calorimetric (adsorption heat versus coverage) curve also measured together with the adsorption isotherm, the simultaneous use of both curves showed that there were two phases of adsorption in the adsorption of methanol, dimethyl ether, ethene and propane in SAPO-34. The dual-site Langmuir equation gave good fits to the adsorption data to support the interpretation that a second (type 2) adsorption phase occurred in the high-pressure region in addition to a first (type 1) adsorption phase on the acid sites at lower pressures. Adsorption experiments and calculations using binary gas mixtures showed that due to the existence of two types of adsorption, the multicomponent Langmuir isotherm equation (Langmuir competitive adsorption model) calculated incorrect surface concentrations when the concentrations were high. In contrast, the ideal adsorbed solution theory (IAST) calculated correct surface concentrations in the adsorption of mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.S. Fogler, Elements of Chemical Reaction Engineering, 4th edn. (Prentice-Hall, New Jersey, 1999), pp. 594–600

    Google Scholar 

  2. G.F. Froment, K.B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, 3rd edn. (Wiley, New Jersey, 2011), pp. 69–71

    Google Scholar 

  3. M.A. Vannice, Kinetics of Catalytic Reactions (Springer, New York, 2005), pp. 91–97

    Book  Google Scholar 

  4. D.D. Do, Adsorption Analysis: Equilibria and Kinetics (Imperial College Press, London, 1998), pp. 191–248

    Google Scholar 

  5. A.L. Myers, J.M. Prausnitz, AIChE J. 11, 121 (1965)

    Article  CAS  Google Scholar 

  6. T. Titze, C. Chmelik, J. Karger, J.M. van Baten, R. Krishna, J. Phy, Chem. C 118, 2660 (2014)

    CAS  Google Scholar 

  7. N. Hansen, R. Krishna, J.M. van Baten, A.T. Bell, F.J. Keil, J. Phy, Chem. C 113, 235 (2009)

    CAS  Google Scholar 

  8. T. Remy, J.C. Saint Remi, R. Singh, P.A. Webley, G.V. Baron, J.F.M. Denayer, J. Phys. Chem. C 115, 8117 (2011)

    Article  CAS  Google Scholar 

  9. B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, US Patent 4440871, to Union Carbide Corporation (1984)

  10. Y.X. Li, M.Y. Zhang, D.Z. Wang, F. Wei, Y. Wang, J. Catal. 311, 281 (2014)

    Article  CAS  Google Scholar 

  11. Y. Kobayashi, Y.X. Li, Y. Wang, D.Z. Wang, Chin. J. Catal. 35, 430 (2014)

    Article  CAS  Google Scholar 

  12. Y. Kobayashi, F. Wang, Q.X. Li, D.Z. Wang, Rev. Sci. Instrum. 85, 34101 (2014)

    Article  CAS  Google Scholar 

  13. D.M. Ruthven, in Molecular Sieves, Science and Technology, vol. 7, ed. by H.G. Karge, J. Weitkamp (Springer, Berlin, 2008), p. 1

    Google Scholar 

  14. M. Niwa, N. Katada, K. Okumura, Characterization and Design of Zeolite Catalysts (Springer, Berlin, 2010), p. 13

    Book  Google Scholar 

  15. Y. Kobayashi, Y.X. Li, Y. Wang, D.Z. Wang, Chin. J. Catal. 34, 2192 (2013)

    Article  CAS  Google Scholar 

  16. F. Haase, J. Sauer, J. Hutter, Chem. Phys. Lett. 266, 397 (1997)

    Article  CAS  Google Scholar 

  17. J. Van der Mynsbrugge, K. Hemelsoet, M. Vandichel, M. Waroquier, V. Van Speybroeck, J. Phys. Chem. C 116, 5499 (2012)

    Article  Google Scholar 

  18. A.J. Jones, R.T. Carr, S.I. Zones, E. Iglesia, J. Catal. 312, 58 (2014)

    Article  CAS  Google Scholar 

  19. A.J. Jones, S.I. Zones, E. Iglesia, J. Phys. Chem. C 118, 17787 (2014)

    Article  CAS  Google Scholar 

  20. C.M. Nguyen, B.A. DeMoor, M.F. Reyniers, G.B. Marin, J. Phys. Chem. C 115, 23831 (2011)

    Article  CAS  Google Scholar 

  21. B.A. DeMoor, M.F. Reyniers, O.C. Gobin, J.A. Lercher, G.B. Marin, J. Phys. Chem. C 115, 1204 (2011)

    Article  CAS  Google Scholar 

  22. F. Eder, M. Stockenhuber, J.A. Lercher, J. Phys. Chem. B 101, 5414 (1997)

    Article  CAS  Google Scholar 

  23. G. Sastre, A. Corma, J. Mol. Catal. A 305, 3 (2009)

    Article  CAS  Google Scholar 

  24. R. Krishna, J.M. van Baten, Sep. Purif. Technol. 76, 325 (2010)

    Article  Google Scholar 

  25. N. Heymans, B. Alban, S. Moreau, G. DeWeireld, Chem. Eng. Sci. 66, 3850 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21173125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Kobayashi, Y., Li, Y. et al. The significance of a second adsorption phase with weakly adsorbed species for the calculation of the surface concentrations of a mixture: methanol–DME and methanol–ethene adsorption in SAPO-34. Res Chem Intermed 41, 9561–9573 (2015). https://doi.org/10.1007/s11164-015-1981-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-1981-x

Keywords

Navigation