Skip to main content
Log in

A spontaneous fuel cell to treat benzoic acid in water and generate electricity simultaneously at ambient conditions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A spontaneous fuel cell is developed in this paper to treat benzoic acid, a precursor of several organic pollutants found in agro-industrial effluents. The innovative concepts behind the cell design are that at room temperature and atmospheric pressure, the reactor could accelerate the removal of benzoic acid and the generation of electricity. Experiments were performed to investigate the influences of hydrogen peroxide concentration, flow rate, electrolyte concentration, and the pH value of hydrogen peroxide solution to optimize the operating parameters for the spontaneous fuel cell, while chemical oxygen demand analysis was performed to assess the extent of degradation. It was found that in the presence of benzoic acid (0.025 mol l−1), H2O2 (10 %) and a flow rate of 13.5 ml per minute, the voltage reaches a stable value of 65 mV, and the current is 100 μA during the early stage of reaction, which is slightly lower than that of some microbial fuel cells. However, the microbial fuel cell is rather problematic because of its long treatment period, inhibitory properties, and secondary pollution. These results show that the spontaneous fuel cell is promising for energy reclamation with the removal of organics and might lead to consideration of the electrochemical role in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Kamaya, Y. Fukaya, K. Suzuki, Chemosphere 59, 255–261 (2005)

    Article  CAS  Google Scholar 

  2. P. Qi, H. Hong, X. Liang, D. Liu, Food Control 20, 414–418 (2009)

    Article  Google Scholar 

  3. M.G. Soni, G.A. Burdock, S.L. Taylor, N.A. Greenberg, Food Chem. Toxicol. 39, 513–532 (2001)

    Article  CAS  Google Scholar 

  4. E. Ayranci, N. Hoda, E. Bayram, J. Colloid Interface Sci. 284, 83–88 (2005)

    Article  CAS  Google Scholar 

  5. M.I. Pariente, F. Martínez, J.A. Melero, J.Á. Botas, T. Velegraki, N.P. Xekoukoulotakis, D. Mantzavinos, Appl Catal B Environ 85, 24–32 (2008)

    Article  CAS  Google Scholar 

  6. T. Velegraki, E. Nouli, A. Katsoni, I.V. Yentekakis, D. Mantzavinos, Appl Catal B Environ 101, 479–485 (2011)

    Article  CAS  Google Scholar 

  7. S. Chou, C. Huang, Chemosphere 38, 2719–2731 (1999)

    Article  CAS  Google Scholar 

  8. F. Montilla, P.A. Michaud, E. Morallón, J.L. Vázquez, C. Comninellis, Electrochim. Acta 47, 3509–3513 (2002)

    Article  CAS  Google Scholar 

  9. T. Velegraki, G. Balayiannis, E. Diamadopoulos, A. Katasaounis, D. Mantzavinos, Chem. Eng. J. 160, 538–548 (2010)

    Article  CAS  Google Scholar 

  10. R.M. Dinsdale, F.R. Hawkes, D.L. Hawkes, Water Res. 34, 2433–2438 (2000)

    Article  CAS  Google Scholar 

  11. K. Chai, H. Ji, Chem. Eng. J. 203, 309–318 (2012)

    Article  CAS  Google Scholar 

  12. B. Nasr, T. Hsen, G. Abdellatif, J Environ Manag 90, 523–530 (2009)

    Article  CAS  Google Scholar 

  13. S. Gamburzev, A.J. Appleby, J. Power Sources 107, 5–12 (2002)

    Article  CAS  Google Scholar 

  14. AMEVd Silva, RJNBd Silva, M.F.G.F.C. Camões, Anal. Chim. Acta 699, 161–169 (2011)

    Article  Google Scholar 

  15. G. Adilbish, J.W. Lee, Y.S. Jang, H.G. Lee, Y.T. Yu, Int J Hydrog Energy 39, 3381–3386 (2014)

    Article  CAS  Google Scholar 

  16. R.M. Souto, J.L. Rodríguez, L. Fernández-Mérida, E. Pastor, J. Electroanal. Chem. 494, 127–135 (2000)

    Article  CAS  Google Scholar 

  17. Z. Xu, H. Zhang, H. Zhong, Q. Lu, Y. Wang, D. Su, Appl Catal B Environ 111–112, 64–270 (2012)

    Google Scholar 

  18. S. Gajaraj, Z. Hu, Chemosphere 117, 151–157 (2014)

    Article  CAS  Google Scholar 

  19. S.B. Velasquez-Orta, I.M. Head, T.P. Curtis, K. Scott, Bioresour. Technol. 102, 5105–5112 (2011)

    Article  CAS  Google Scholar 

  20. D. Aguado, T. Montoya, J. Ferrer, A. Seco, Environ Mod Softw 21, 845–851 (2006)

    Article  Google Scholar 

  21. K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Environ. Sci. Technol. 39, 8077–8082 (2005)

    Article  CAS  Google Scholar 

  22. S. Cheng, H. Liu, B.E. Logan, Environ. Sci. Technol. 40, 2426–2432 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is based on work supported by the National Natural Science Foundation of China (21277045, 21307032), the Public Welfare Project of the Ministry of Environmental Protection (201309021), the “Shu Guang” project of the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, J., Cao, L. & Yang, J. A spontaneous fuel cell to treat benzoic acid in water and generate electricity simultaneously at ambient conditions. Res Chem Intermed 41, 9015–9028 (2015). https://doi.org/10.1007/s11164-015-1944-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-1944-2

Keywords

Navigation