Skip to main content
Log in

Sonocatalytic ozonation, with nano-TiO2 as catalyst, for degradation of 4-chloronitrobenzene in aqueous solution

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The results for the degradation efficiency of 4-chloronitrobenzene (4-CNB) by various advanced oxidation processes in a batch mode using nano-structured titanium dioxide demonstrated the order of O3/US/TiO2 > US/O3 > O3/TiO2 > O3 > US/TiO2 > US. The utilized TiO2 nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Moreover, all processes obeyed pseudo-first order kinetics. Then, the effect of the main operational conditions including pH, ozone, initial 4-CNB concentration, TiO2 dosage and ultrasonic power on 4-CNB degradation was studied in the coupled O3/US/TiO2 process as the most significant treatment method with a high synergistic effect. The optimal pH and TiO2 dosage were selected to be 9 and 50 mg/L owing to the efficient indirect attack of hydroxyl radicals and less screening effects of TiO2 particles on ultrasonic waves, respectively. By increasing the amount of O3 concentration and ultrasonic power, the degradation of 4-CNB was enhanced due to the more production of reactive oxygen species. However, the opposite trend was observed for 4-CNB concentration because the same amounts of generated oxidizing species under the identical experimental conditions had to degrade more organic pollutants and its degradation intermediates. Eventually, the total organic carbon (TOC) was utilized to monitor the mineralization of 4-CNB in the above-mentioned processes and the same results were obtained with lower rate constants compared to degradation rate constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Ye, Z. Chen, X. Liu, Y. Ben, J. Shen, J. Hazard. Mater. 167, 1021–1027 (2009)

    Article  CAS  Google Scholar 

  2. J.M. Shen, Z. Chen, Z. Xu, X. Li, B. Xu, F. Qi, J. Hazard. Mater. 152, 1325–1331 (2008)

    Article  CAS  Google Scholar 

  3. Z. Guo, S. Zheng, Z. Zheng, F. Jiang, W. Hu, L. Ni, Water Res. 39, 1174–1182 (2005)

    Article  CAS  Google Scholar 

  4. N. Getoff, Res. Chem. Intermed. 27, 343–358 (2001)

    Article  CAS  Google Scholar 

  5. M.A. Behnajady, N. Modirshahla, M. Shokri, B. Vahid, Ultrason. Sonochem. 15, 1009–1014 (2008)

    Article  CAS  Google Scholar 

  6. Y.L. Pang, A.Z. Abdullah, S. Bhatia, Desalination 277, 1–14 (2011)

    Article  CAS  Google Scholar 

  7. P. Pichat, L. Cermenati, A. Albini, D. Mas, H. Delprat, C. Guillard, Res. Chem. Intermed. 26, 161–170 (2000)

    Article  CAS  Google Scholar 

  8. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Water Res. 44, 2997–3027 (2010)

    Article  CAS  Google Scholar 

  9. T.J. Mason, J.P. Lorimer, Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing, 1st edn. (Wiley-VCH, Weinheim, 2002)

    Book  Google Scholar 

  10. M.A. Behnajady, N. Modirshahla, M. Shokri, B. Vahid, Glob. Nest J. 10, 8–15 (2008)

    Google Scholar 

  11. M. Kubo, K. Matsuoka, A. Takahashi, N. Shibasaki-Kitakawa, T. Yonemoto, Ultrason. Sonochem. 12, 263–269 (2005)

    Article  CAS  Google Scholar 

  12. A. Mahyar, M.A. Behnajady, N. Modirshahla, Photochem. Photobiol. 87, 795–801 (2011)

    Article  CAS  Google Scholar 

  13. M. Anpo, Pure Appl. Chem. 72, 1265–1270 (2000)

    CAS  Google Scholar 

  14. E. Selli, Phys. Chem. Chem. Phys. 4, 6123–6128 (2002)

    Article  CAS  Google Scholar 

  15. T. Mousanejad, M. Khosravi, S. Tabatabaii, A.R. Khataee, K. Zare, Res. Chem. Intermed. 40, 711–722 (2014)

    Article  CAS  Google Scholar 

  16. Z. He, S. Song, M. Xia, J. Qiu, H. Ying, B. Lü, J. Chen, Chemosphere 69, 191–199 (2007)

    Article  CAS  Google Scholar 

  17. Y. Yang, J. Ma, Q. Qin, X. Zhai, J. Molecul, Catal. A 267, 41–48 (2007)

    Article  CAS  Google Scholar 

  18. C.D. Vecitis, T. Lesko, A.J. Colussi, M.R. Hoffmann, J. Phys. Chem. 114, 4968–4980 (2010)

    Article  CAS  Google Scholar 

  19. X. Xu, H. Shi, D. Wang, J. Zhejiang Univ. Sci. B 6, 553–558 (2005)

    Article  Google Scholar 

  20. K. Thamaphat, P. Limsuwan, B. Ngotawornchai, J. Kasetsart, Nat. Sci. 42, 357–361 (2008)

    Google Scholar 

  21. B. Vahid, A.R. Khataee, Electrochim. Acta 88, 614–620 (2013)

    Article  CAS  Google Scholar 

  22. N. Shimizu, C. Ogino, M.F. Dadjour, T. Murata, Ultrason. Sonochem. 14, 184–190 (2007)

    Article  CAS  Google Scholar 

  23. J. Wang, Y. Jiang, Z. Zhang, X. Zhang, T. Ma, G. Zhang, Y. Li, Ultrason. Sonochem. 14, 545–551 (2007)

    Article  Google Scholar 

  24. F.J. Beltrán, F.J. Rivas, O. Gimeno, J. Chem. Technol. Biotechnol. 80, 973–984 (2005)

    Article  Google Scholar 

  25. M.H. Priya, G. Madras, Ind. Eng. Chem. Res. 45, 913–921 (2006)

    Article  CAS  Google Scholar 

  26. M.H. Priya, G. Madras, J. Photochem. Photobiol., A 179, 256–262 (2006)

    Article  CAS  Google Scholar 

  27. A.R. Khataee, A. Akbarpour, B. Vahid, J. Taiwan Inst. Chem. E 45, 930–936 (2013)

    Article  Google Scholar 

  28. K. Rajeshwar, M. Osugi, W. Chanmanee, C. Chenthamarakshan, M. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, J. Photochem. Photobiol., C 9, 171–192 (2008)

    Article  CAS  Google Scholar 

  29. C.H. Chiou, C.Y. Wu, R.S. Juang, Sep. Purif. Technol. 62, 559–564 (2008)

    Article  CAS  Google Scholar 

  30. A. Rodríguez, R. Rosal, J. Perdigón-Melón, M. Mezcua, A. Agüera, M. Hernando, E. García-Calvo, Hdb. Environ. Chem. 5, 127–175 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tabriz Branch, Islamic Azad University for the financial support of this research, which is based on a research project contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Vahid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahid, B., Mousanejad, T. & Khataee, A. Sonocatalytic ozonation, with nano-TiO2 as catalyst, for degradation of 4-chloronitrobenzene in aqueous solution. Res Chem Intermed 41, 7029–7042 (2015). https://doi.org/10.1007/s11164-014-1796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1796-1

Keywords

Navigation