Skip to main content
Log in

Kinetic studies on Cr(III)-binding behavior of collagen fiber functionalized by amino- and carboxyl-terminated hyperbranched polyamide

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Two kinds of insoluble collagen fiber (CF) were prepared by grafting amino- and carboxyl-terminated hyperbranched polyamide into collagen fiber using the cross-linking and terminal groups modification methods: (1) grafting amino terminated hyperbranched polyamide to CF by glutaraldehyde, and (2) condensation of the resulting carboxyl with glyoxylic acid. Their structures were characterized by FT-IR, SEM-EDX, ion distribution, and XRD. Because of the condensation of glyoxylic acid, the adsorption peaks of carboxyl groups occurred at 1,740 cm−1 in the FTIR spectra. The adsorption capabilities of the products for Cr(III) were studied by batch experiments. The pseudo-first-order, pseudo-second-order, and intra-particle diffusion model equations were used for the kinetic studies. The results showed that the products exhibited better adsorption capabilities for Cr(III). The adsorption capability of carboxyl-terminated product was higher than that of amino-terminated one and this is attributed to the carboxylic functional groups in the carboxyl-terminated product, which are responsible for their cationic ion exchange phenomenon. It was also observed that kinetic data correspond very well to the pseudo-second-order equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

CF:

Collagen fiber

FT-IR:

Fourier transform infrared spectroscopy

SEM:

Scanning electron microscope

EDX:

Energy dispersive X-ray

XRD:

X-ray diffraction

m :

Mass of the adsorbent added (g)

C 0 :

Initial concentration of chromium in the solution (mg L−1)

C t :

The amount of chromium in the solution at time ‘t’ (mg L−1)

t :

Time (min)

C e :

Equilibrium chromium concentration in solution (mg L−1)

q t :

Amount of chromium uptake per unit mass of CF-HBPN or CF-HBPC at time ‘t’ (mg g−1)

q e :

Amount of chromium uptake per unit mass of CF-HBPN or CF-HBPC at equilibrium (mg g−1)

k 1 :

Pseudo-first-order rate constant (min−1)

k 2 :

Pseudo-second-order rate constant [g (mg min)−1]

n % :

Removal rate of Cr(III)

k id :

Kannan intra-particle diffusion rate constant (mg g−1 min−1/2)

t 0.5 :

Time required to complete the half of the adsorption (min)

V :

Volume of the solution (L)

T :

Absolute temperature (°C)

CF-HBPN:

Amino-terminated hyperbranched polyamide collagen fiber

CF-HBPC:

Carboxyl-terminated hyper-branched polyamide collagen fiber

CF-HBPN-Cr:

Cr(III) laden amino-terminated hyperbranched polyamide collagen fiber

CF-HBPC-Cr:

Cr(III) laden carboxyl-terminated hyperbranched polyamide collagen fiber

References

  1. M. Naushad, Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem. Eng. J. 235, 100–108 (2014)

    Article  CAS  Google Scholar 

  2. M. Ghasemi, M.U. Naushad, N. Ghasemi, Y. Khosravi-fard, A novel agricultural waste based adsorbent for the removal of Pb(II) from aqueous solution: kinetics, equilibrium and thermodynamic studies. J. Ind. Eng. Chem. 20, 454–461 (2014)

    Article  CAS  Google Scholar 

  3. S. Mustafa, K.H. Shah, A. Naeem, M. Waseem, M. Tahir, J. Hazard, Chromium (III) removal by weak acid exchanger Amberlite IRC-50 (Na). Mater. 160, 1–5 (2008)

    CAS  Google Scholar 

  4. J. Lach, E. Okoniewska, E. Neczaj, M. Kacprzak, The adsorption of Cr(III) and Cr(VI) on activated carbons in the presence of phenol. Desalination 223, 249–255 (2008)

    Article  CAS  Google Scholar 

  5. Lutfullah, M. Rashid, U. Haseen, N. Rahman, An advanced Cr(III) selective nano-composite cation exchanger: synthesis, characterization and sorption characteristics. J. Ind. Eng. Chem. 20, 809–817 (2014)

    Article  CAS  Google Scholar 

  6. R.B. Garcia-Reyes, J.R. Rangel-Mendez, Adsorption kinetics of chromium(III) ions on agro-waste materials. Bioresour. Technol. 101, 8099–8108 (2010)

    Article  CAS  Google Scholar 

  7. R. Aravindhan, B. Madhan, J.R. Rao, B.U. Nair, T. Ramasami, Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse. Environ. Sci. Technol. 38, 300–306 (2004)

    Article  CAS  Google Scholar 

  8. V. Suresh, M. Kanthimathi, P. Thanikaivelan, J. Raghava Rao, B. Unni Nair, An improved product-process for cleaner chrome tanning in leather processing. J. Clean. Prod. 9, 483–491 (2001)

    Article  Google Scholar 

  9. L. Friberg, G.F. Nordberg, U.B. Work, Handbook of toxicity of metals (Elsevier Medical Press, North Holland, 1980)

    Google Scholar 

  10. Zhenze Li, Qiang Tang, Takeshi Katsumi, Xiaowu Tang, Toru Inui, Shigeyoshi Imaizumi, Leaf char: an alternative adsorbent for Cr(III). Desalination 264, 70–77 (2010)

    Article  CAS  Google Scholar 

  11. J. Raghava-Rao, R. Gayatri, R. Rajaram, B.U. Nair, T. Ramasami, Chromium(III) hydrolytic oligomers: their relevance to protein binding. BBA-Gen Subj. 1472, 595–602 (1999)

    Article  CAS  Google Scholar 

  12. Y.M. Tzou, R.H. Loeppert, M.K. Wang, Effect of organic complexing ligands on Cr(III) oxidation by MnOx. Soil Sci. 167, 729–738 (2002)

    Article  CAS  Google Scholar 

  13. National Standards for the People's Republic of China, Integrated wastewater discharge standard, GB 8978 (China Standard Press, Beijing, 1996)

    Google Scholar 

  14. S.S. Tahir, R. Naseem, Removal of Cr(III) from tannery wastewater by adsorption onto bentonite clay. Sep. Purif. Technol. 53, 312–321 (2007)

    Article  CAS  Google Scholar 

  15. S. Renou, J.G. Givaudan, S. Poulain, F. Dirassouyan, P. Moulin, Landfill leachate treatment: review and opportunity. J. Hazard. Mater. 150, 468–493 (2008)

    Article  CAS  Google Scholar 

  16. T. Qiang, M. Luo, Q. Bu, X. Wang, Adsorption of an acid dye on hyperbranched aminated collagen fibers. Chem. Eng. J. 197, 343–349 (2012)

    Article  CAS  Google Scholar 

  17. R. Chand, T. Watari, K. Inoue, H.N. Luitel, T. Torikai, M. Yada, Chemical modification of carbonized wheat and barley straw using HNO3 and the adsorption of Cr(III). J. Hazard. Mater. 167, 319–324 (2009)

    Article  CAS  Google Scholar 

  18. H. Sashiwa, Y. Shigemasa, R. Roy, Chemical modification of chitosan. Part 9: reaction of N-carboxyethylchitosan methyl ester with diamines of acetal ending PAMAM dendrimers. Carbohyd. Polym. 47, 201–208 (2002)

    Article  CAS  Google Scholar 

  19. H. Sashiwa, Y. Shigemasa, R. Roy, Chemical modification of chitosan 8: preparation of chitosan-dendrimer hybrids via short spacer. Carbohyd. Polym. 47, 191–199 (2002)

    Article  CAS  Google Scholar 

  20. H. Sashiwa, Y. Shigemasa, R. Roy, Chemical modification of chitosan 11: chitosan–dendrimer hybrid as a tree like molecule. Carbohyd. Polym. 49, 195–205 (2002)

    Article  CAS  Google Scholar 

  21. Qu Rongjun, Changmei Sun, Chunnuan Ji, Chunhua Wang, Hou Chen, Yuzhong Niu, Chengju Liang, Qiyi Song, Preparation and metal-binding behaviour of chitosan functionalized by ester- and amino-terminated hyperbranched polyamidoamine polymers. Carbohyd. Res. 343, 267–273 (2008)

    Article  Google Scholar 

  22. Peng Liu, Tingmei Wang, Adsorption properties of hyperbranched aliphatic polyester grafted attapulgite towards heavy metal ions. J. Hazard. Mater. 149, 75–79 (2007)

    Article  CAS  Google Scholar 

  23. Wang Xuechuan, Zhang Feifei, Qiang Taotao, Wang Xiaoqin, Study on the absorption property of collagen fiber toward Cr(VI). J. Func. Mater. 6, 795–799 (2013). (In chinese)

    Google Scholar 

  24. Wang Xuechuan, Zhang Feifei, Qiang Taotao, Characteristic and adsorption mechanism of hyperbranched collagen fiber toward Cr(VI). Acta Chimica Sinica 70, 2536–2542 (2012). (In chinese)

    Article  Google Scholar 

  25. X. Wang, F. Zhang, T. Qiang, Study on Adsorption Property of Collagen Fiber Loaded Hyperbranched Polyamide-amine toward Cr (VI). 2nd International Conference on Energy, Environment and Sustainable Development, 514–517, 2013

  26. H.M. Cheng, R. Wang, Y.M. Wang, M. Chen, L.L. Liao, Z. Li, W.W. Duan, Z.Q. Li, Preparation and characterization of acid relaxed collagen fiber from pigskin. J. Sichuan Univ. 3, 78–82 (2007). (In chinese)

    Google Scholar 

  27. F. Zhang, Y.Y. Chen, D.S. Zhang, Y.R. Hua, B. Zhao, Preparation and Properties of Amino-Terminated Hyperbranched Polymers and Its Quaternary Ammonium Salt. Polym. Mater. Sci. Eng. 25, 141–144 (2009). (In chinese)

    CAS  Google Scholar 

  28. W. Xuechuan, Z. Feifei, Q. Taotao, Synthesis and characterization of hyperbranched collagen fiber absorbent. J. Func. Mater. 44, 527–531 (2013)

    Google Scholar 

  29. J.H. Chena, G.P. Li, Q.L. Liu, J.C. Ni, W.B. Wu, J.M. Lin, Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions. Chem. Eng. J. 165, 465–473 (2010)

    Article  Google Scholar 

  30. X. Zou, J. Pan, H. Ou, X. Wang, W. Guan, C. Li, Y. Yan, Y. Duan, Adsorptive removal of Cr(III) and Fe(III) from aqueous solution by chitosan/attapulgite composites: equilibrium, thermodynamics and kinetics. Chem. Eng. J. 167, 112–121 (2011)

    Article  CAS  Google Scholar 

  31. S. Debnath, U.C. Ghosh, Kinetics, isotherm and thermodynamics for Cr(III) and Cr(VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide. J. Chem. Thermodyn. 40, 67–77 (2008)

    Article  CAS  Google Scholar 

  32. F. Gode, E. Moral, Column study on the adsorption of Cr(III) and Cr(VI) using pumice, Yarikkaya brown coal, Chelex-100 and Lewatit MP 62. Bioresour. Technol. 99, 1981–1991 (2008)

    Article  CAS  Google Scholar 

  33. V. Thoma, K. Tampouris, A.L. Petrou, Kinetics and mechanism of the reaction between chromium(III) and 3, 4-dihydroxy-phenyl-propenoic acid (caffeic acid) in weak acidic aqueous solutions. Bioinorg. Chem. Appl. 2008, 1–8 (2008)

    Article  Google Scholar 

  34. H. Jiang, T. Yang, Y. Wang, H. Lian, X. Hu, Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters. Talanta 116, 361–367 (2013)

    Article  CAS  Google Scholar 

  35. W.J. Weber, J.C. Morris, Kinetics of adsorption on a carbon from solution. J. Sanit. Eng. Div.-ACSE 89, 31–59 (1963)

    Google Scholar 

  36. J.H. Drese, S. Choi, Ryan P. Lively, W.J. Koros, D.J. Fauth, M.L. Gray, C.W. Jones, Synthesis structure property relationships for hyperbranched aminosilica CO2 adsorbents. Adv. Funct. Mater. 19, 3821–3832 (2009)

    Article  CAS  Google Scholar 

  37. C.A.S. Maria, X.S. Zhao, Functionalization of SBA-15 with APTES and characterization of functionalized materials. J. Phys. Chem. B 107, 12650–12657 (2003)

    Article  Google Scholar 

  38. K. Sundar, A. Mukherjee, M. Sadiq, N. Chandrasekaran, Cr (III) bioremoval capacities of indigenous and adapted bacterial strains from Palar river basin. J. Hazard. Mater. 187, 553–561 (2011)

    Article  CAS  Google Scholar 

  39. Y.G. Ko, H.J. Lee, H.C. Oh, U.S. Choi, Cu2+ sequestration by amine-functionalized silica nanotubes. J. Hazard. Mater. 260, 489–497 (2013)

    Article  CAS  Google Scholar 

  40. J. Rivera-Utrilla, M. Sánchez-Polo, Adsorption of Cr(III) on ozonised activated carbon. Importance of Cr-cation interactions. Water Res. 37, 3335–3340 (2003)

    Article  CAS  Google Scholar 

  41. R. Leyva-Ramos, L. Fuentes-Rubio, R.M. Guerrero-Coronado, J. Mendoza-Barron, Adsorption of trivalent chromium from aqueous solutions onto activated carbon. J. Chem. Technol. Biotechnol. 62, 64–67 (1995)

    Article  CAS  Google Scholar 

  42. K. Dokken, G. Gamez, I. Herrea, K.J. Tiemann, N.E. Pingitore, R.R. Chianelli, J.L. Gardea-Torresdey, Characterization of chromium(VI) bioreduction and chromium(III) binding to alfalfa biomass, in Conference on hazardous waste research, ed. by L.E. Erickson, M.M. Rankin (Gateways to Environmental Solutions, Kansas State Univ, Regal Riverfront Hotel St. Louis, Missouri, 1999), pp. 101–113

    Google Scholar 

  43. X. Han, Mechanism for the removal of Cr(VI) and Cr(III) by a microalgal Isolate Chlorella miniata (Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, 2007)

    Google Scholar 

  44. Z.A. AlOthman, M.M. Alam, M.U. Naushad, Heavy toxic metal ion exchange kinetics: validation of ion exchange process on composite cation exchanger nylon 6,6 Zr(IV) phosphate. J. Ind. Eng. Chem. 19, 956–960 (2013)

    Article  CAS  Google Scholar 

  45. M.M. Alam, Z.A. ALOthman, M.U. Naushad, Analytical and environmental applications of polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers. J. Ind. Eng. Chem. 19, 1973–1980 (2013)

    Article  CAS  Google Scholar 

  46. L.S. de Limaa, M.D.M. Araujo, S.P. Quináia, D.W. Migliorine, J.R. Garcia, Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design. Chem. Eng. J. 166, 881–889 (2011)

    Article  Google Scholar 

  47. H. Parab, S. Joshi, N. Shenoy, A. Lali, U.S. Sarma, M. Sudersanan, Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem. 41, 609–615 (2006)

    Article  CAS  Google Scholar 

  48. F. An, B. Gao, Adsorption characteristics of Cr(III) ionic imprinting polyamine on silica gel surface. Desalination 249, 1390–1396 (2009)

    Article  CAS  Google Scholar 

  49. Z.Y. Li, S.Y. Guo, L. Li, Study on the process, thermodynamical isotherm and mechanism of Cr(III) uptake by Spirulina platensis. J. Food Eng. 75, 129–136 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by the National Natural Science Foundation of China (NSFC, 21276151), Postgraduate Innovation Project Funding of Shaanxi University of Science and Technology (2014019), Key Scientific Research Group of Shaanxi province (2013KCT-08) for funding this project. The authors are also grateful to the management of Shaanxi University of Science and Technology for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, F., Qiang, T. et al. Kinetic studies on Cr(III)-binding behavior of collagen fiber functionalized by amino- and carboxyl-terminated hyperbranched polyamide. Res Chem Intermed 41, 6589–6610 (2015). https://doi.org/10.1007/s11164-014-1763-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1763-x

Keywords

Navigation