Skip to main content
Log in

Ultrasound promotes one-pot synthesis of 1,4-dihydropyridine and imidazo[1,2-a]quinoline derivatives, catalyzed by ZnO nanoparticles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

An Erratum to this article was published on 22 May 2014

Abstract

Ultrasonic irradiation is being considered not only as a green approach but also as a powerful technique for the synthesis of 1,4-dihydropyridine and imidazo[1,2-a]quinoline derivatives. It can be carried out by using multicomponent reaction of cyclic enaminoketones, malononitrile, and aromatic aldehydes, in the presence of catalytic amounts of zinc oxide nanoparticles, in EtOH, at 80 °C. The preponderance of such a catalyst is due to its inexpensiveness, stability, and the potential of being easily obtained. Furthermore, high conversions, short reaction times, and cleaner reaction profiles are some of the advantages of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. T.J. Mason, J.P. Lorimer, In Sonochemistry: Theory Application and Uses of Ultrasound in Chemistry (Wiley, New York, 1988)

    Google Scholar 

  2. J.L. Luche, Synthetic Organic Sonochemistry (Plenum, New York, 1998)

    Book  Google Scholar 

  3. H.J. Zang, M.L. Wang, B.W. Cheng, J. Song, Ultrason. Sonochem. 16, 301 (2009)

    Article  CAS  Google Scholar 

  4. J.T. Li, M.X. Sun, Y. Yin, Ultrason. Sonochem. 17, 359 (2010)

    Article  Google Scholar 

  5. A. Bazgir, S. Ahadi, R. Ghahremanzadeh, H.R. Khavasi, P. Mirzaei, Ultrason. Sonochem. 17, 447 (2010)

    Article  CAS  Google Scholar 

  6. A. Dandia, R. Singh, S.L. Gupta, Res. Chem. Intermed. (2013). doi:10.1007/s11164-013-1292-z

    Google Scholar 

  7. E. Chandralekha, A. Thangamani, R. Valliappan, Res. Chem. Intermed. 39, 961 (2013)

    Article  CAS  Google Scholar 

  8. A.S. Al-bogami, Res. Chem. Intermed. (2013). doi:10.1007/s11164-013-1171-7

    Google Scholar 

  9. R. Sandaroos, S. Damavandi, Res. Chem. Intermed. 39, 4167 (2013)

    Article  CAS  Google Scholar 

  10. R.V.A. Orru, M. de Greef, Synthesis 10, 1471 (2003)

    Article  Google Scholar 

  11. A. Domling, I. Ugi, Angew. Chem. Int. Ed. 39, 3168 (2000)

    Article  CAS  Google Scholar 

  12. H. Ohno, Y. Ohta, S. Oishi, N. Fujii, Angew. Chem. Int. Ed. 46, 2295 (2007)

    Article  CAS  Google Scholar 

  13. H. Yoshida, H. Fukushima, J. Ohshita, A. Kunai, J. Am. Chem. Soc. 128, 11040 (2006)

    Article  CAS  Google Scholar 

  14. H.A. Dondas, C.W.G. Fishwick, X. Gai, R. Grigg, C. Kilner, N. Dumrongchai, B. Kongkathip, N. Kongkathip, C. Polysuk, V. Sridharan, Angew. Chem. Int. Ed. 44, 7570 (2005)

    Article  CAS  Google Scholar 

  15. A.R. Siamaki, B.A. Arndtsen, J. Am. Chem. Soc. 128, 6050 (2006)

    Article  CAS  Google Scholar 

  16. E.C. Franklin, Chem. Rev. 16, 305 (1935)

    Article  CAS  Google Scholar 

  17. F.W. Bergstrom, Chem. Rev. 35, 77 (1944)

    Article  CAS  Google Scholar 

  18. D.M. Stout, A. Meyers, Chem. Rev. 82, 223 (1982)

    Article  CAS  Google Scholar 

  19. R. Boer, V. Gekeler, Drugs Future 20, 499 (1995)

    Google Scholar 

  20. M. Ramesh, W.V. Matowe, J. Med. Chem. 41, 509 (1998)

    Article  CAS  Google Scholar 

  21. S.R. Pattan, A.N. Parate, Indian J. Heterocycl. Chem. 12, 387 (2003)

    CAS  Google Scholar 

  22. Y.S. Sadanandam, M.M. Shetty, Eur. J. Med. Chem. 29, 975 (1994)

    Article  CAS  Google Scholar 

  23. K. Cooper, M.J. Fray, J. Med. Chem. 35, 3115 (1992)

    Article  CAS  Google Scholar 

  24. S.R. Agudoawu, E.E. Knaus, J. Heterocycl. Chem. 37, 303 (2000)

    Article  CAS  Google Scholar 

  25. A. Shafiee, N. Rastakari, Daru 12, 81 (2004)

    CAS  Google Scholar 

  26. I.R. Ager, A.C. Barnes, G.W. Danswan, P.W. Hairsine, D.P. Kay, P.D. Kennewell, S.S. Matharu, P. Miller, P. Robson, D.A. Rowlands, W.R. Tully, R. Westwood, J. Med. Chem. 31, 1098 (1988)

    Article  CAS  Google Scholar 

  27. S.J. Clements, G. Danswan, C.R. Gardner, S.S. Matharu, R. Murdoch, W.R. Tully, R. Westwood, J. Med. Chem. 31, 1220 (1988)

    Article  Google Scholar 

  28. N.R. Shiju, V.V. Guliants, Appl. Catal. A Gen. 356, 1 (2009)

    Article  CAS  Google Scholar 

  29. J. Guzman, B.C. Gates, Nano Lett. 1, 689 (2001)

    Article  CAS  Google Scholar 

  30. B.M. Choudary, M.L. Kantam, K.V.S. Ranganath, K. Mahender, B. Sreedhar, J. Am. Chem. Soc. 126, 3396 (2004)

    Article  CAS  Google Scholar 

  31. S. Anadan, A. Vinu, N. VenkataChalam, B. Arabindoo, V. Murugesan, J. Mol. Catal. A Chem. 256, 312 (2006)

    Article  Google Scholar 

  32. K.J. Klabunde, R. Mulukutla, Nanoscale Materials in Chemistry (Wiley Interscience, New York, 2001)

    Book  Google Scholar 

  33. A.J. Amali, R.K. Rana, Green Chem. 11, 1781 (2009)

    Article  CAS  Google Scholar 

  34. R. Schlogl, S.B. Abd, Chem. Int. Ed. 43, 1628 (2003)

    Article  Google Scholar 

  35. A.T. Bell, Science 299, 1688 (2003)

    Article  CAS  Google Scholar 

  36. Z. Lasemi, E. Mehrasbi, Res. Chem. Intermed. (2013). doi:10.1007/s11164-013-1394-7

    Google Scholar 

  37. B.M. Choudary, K. Mahendar, K.V.S. Ranganath, J. Mol. Catal. A Chem. 234, 25 (2005)

    Article  CAS  Google Scholar 

  38. M.H. Sarvari, H. Sharghi, J. Org. Chem. 69, 2573 (2004)

    Article  Google Scholar 

  39. F. Tamaddon, M.A. Amrollahi, L. Sharafat, Tetrahedron Lett. 46, 7841 (2005)

    Article  CAS  Google Scholar 

  40. B.V. Lichitsky, A.A. Dudinov, M.M. Krayushkin, Arkivoc ix, 73 (2012)

    Google Scholar 

  41. S. Tu, C. Li, G. Li, L. Cao, Q. Shao, D. Zhou, B. Jiang, J. Zhou, M. Xia, J. Comb. Chem. 9, 1144 (2007)

    Article  CAS  Google Scholar 

  42. D.S. Patel, J.R. Avalani, D.K. Raval, J. Braz. Chem. Soc. 23, 1951 (2012)

    Article  CAS  Google Scholar 

  43. Z. Karimi-Jaberi, Z. Takmilifard, Eur. Chem. Bull. 2, 211 (2013)

    CAS  Google Scholar 

  44. M. Hosseini-Sarvari, S. Etemad, Tetrahedron 64, 5519 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their great appreciation to Kerman University of Medical Sciences, Pharmaceutics Research Center, Institute of Neuropharmacology for support of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Abaszadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abaszadeh, M., Seifi, M. & Asadipour, A. Ultrasound promotes one-pot synthesis of 1,4-dihydropyridine and imidazo[1,2-a]quinoline derivatives, catalyzed by ZnO nanoparticles. Res Chem Intermed 41, 5229–5238 (2015). https://doi.org/10.1007/s11164-014-1624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1624-7

Keywords

Navigation