Skip to main content

Advertisement

Log in

Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Avoiding predation is generally seen as the most common explanation for why animals aggregate. However, it remains questionable whether the existing theory provides a complete explanation of the functions of large shoals formation in marine fishes. Here, we consider how well the mechanisms commonly proposed to explain enhanced safety of group living prey explain fish shoals reaching very large sizes. By conceptually re-examining these mechanisms for large marine shoals, we find little support from either empirical studies or classical models. We address first the importance of reassessing the functional theory with predator-dependent models and the need to consider factors other than predation to explain massive fish shoals. Second, we argue that taking into account the interplay between ultimate benefits and proximate perspectives is a key step in understanding large fish shoals in marine ecosystems. Third, we present the growing body of evidence from field studies that identify shoal internal structure as an important feature for how large shoals can form, maintain and react as a coordinated unit to external stimuli. In particular, we consider a mechanistic basis of local rules of interaction for group formation and collective dynamic properties that can account for groups reaching very large sizes. Recent research in collective animal behaviour has shifted focus from the importance of global properties (group size) to local properties (local density and information transfer). In contrast to studies of fish shoals in the laboratory, the difficulty in measuring behaviour in large shoals in marine systems remains a major constraint to further work. Advances in acoustical observation have shown the greatest potential to provide data that can link proximate mechanisms in, and ultimate functions of, large marine fish shoals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrahams MV, Kattenfeld MG (1997) The role of turbidity as a constraint on predator–prey interactions in aquatic environments. Behav Ecol Sociobiol 40(3):169–174. doi:10.1007/s002650050330

    Google Scholar 

  • Aoki I (1982) A simulation study on the schooling mechanism in fish. Bull Jap Soc Sci Fish 48(8):1081–1088

    Google Scholar 

  • Axelsen BrE, Nøttestad L, Fernö A, Johannessen A, Misund OA (2000) ‘Await’ in the pelagic: dynamic trade-off between reproduction and survival within a herring school splitting vertically during spawning. Mar Ecol Prog Ser 205:259–269. doi:10.3354/meps205259

    Google Scholar 

  • Axelsen BE, Anker-Nilssen T, Fossum P, Kvamme C, Nøttestad L (2001) Pretty patterns but a simple strategy: predator–prey interactions between juvenile herring and Atlantic puffins observed with multibeam sonar. Can J Zool 79(9):1586–1596. doi:10.1139/z01-113

    Google Scholar 

  • Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008) Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim Behav 76(1):201–215. doi:10.1016/j.anbehav.2008.02.004

    Google Scholar 

  • Barber I, Huntingford FA (1995) The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spined sticklebacks, Gasterosteus aculeatus. Behaviour 132(15–16):1223–1240. doi:10.1163/156853995x00540

    Google Scholar 

  • Barber I, Huntingford FA (1996) Parasite infection alters schooling behaviour: deviant positioning of helminth-infected minnows in conspecific groups. Proc R Soc London Ser B Biol Sci 263(1374):1095–1102. doi:10.1098/rspb.1996.0161

    Google Scholar 

  • Barber I, Rushbrook BJ (2008) Parasites and fish behaviour. In: Magnhagen C, Braithwaite VA, Forsgren E, Kapoor BG (eds) fish behaviour. Science Publishers, Enfield, pp 525–561

    Google Scholar 

  • Barnard CJ, Sibly RM (1981) Producers and scroungers: a general model and its application to captive flocks of house sparrows. Anim Behav 29(2):543–550. doi:10.1016/s0003-3472(81)80117-0

    Google Scholar 

  • Barta Z, Flynn R, Giraldeau L-A (1997) Geometry for a selfish foraging group: a genetic algorithm approach. Proc R Soc Lond Ser B Biol Sci 264(1385):1233–1238. doi:10.1098/rspb.1997.0170

    Google Scholar 

  • Beauchamp G, Ruxton GD (2007) False alarms and the evolution of antipredator vigilance. Anim Behav 74(5):1199–1206. doi:10.1016/j.anbehav.2007.02.014

    Google Scholar 

  • Bednekoff PA, Lima SL (1998) Re–examining safety in numbers: interactions between risk dilution and collective detection depend upon predator targeting behaviour. Proc R Soc Lond Ser B Biol Sci 265(1409):2021–2026. doi:10.1098/rspb.1998.0535

    Google Scholar 

  • Berdahl A, Torney CJ, Ioannou CC, Faria JJ, Couzin ID (2013) Emergent sensing of complex environments by mobile animal groups. Science 339(6119):574–576. doi:10.1126/science.1225883

    CAS  PubMed  Google Scholar 

  • Bertram BCR (1978) Living in groups: predators and prey. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach, vol 1. Blackwell Scientific Publications, Oxford, pp 64–96

    Google Scholar 

  • Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E, Viale M, Walczak AM (2012) Statistical mechanics for natural flocks of birds. Proc Natl Acad Sci USA 109(13):4786–4791. doi:10.1073/pnas.1118633109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blaxter JHS (1985) The herring: a successful species? Can J Fish Aquat Sci 42(S1):21–30. doi:10.1139/f85-259

    Google Scholar 

  • Brierley AS, Cox MJ (2010) Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr Biol 20(19):1758–1762. doi:10.1016/j.cub.2010.08.041

    CAS  PubMed  Google Scholar 

  • Bumann D, Krause J, Rubenstein D (1997) Mortality risk of spatial positions in animal groups: the danger of being in the front. Behaviour 134(13–14):1063–1076. doi:10.1163/156853997x00403

    Google Scholar 

  • Caro T (2005) Antipredator defenses in birds and mammals. University of Chicago Press, Chicago

    Google Scholar 

  • Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M (2010) Scale-free correlations in starling flocks. Proc Natl Acad Sci USA 107(26):11865–11870. doi:10.1073/pnas.1005766107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chicoli A, Butail S, Lun Y, Bak-Coleman J, Coombs S, Paley DA (2014) The effects of flow on schooling Devario aequipinnatus: school structure, startle response and information transmission. J Fish Biol 84(5):1401–1421. doi:10.1111/jfb.12365

    CAS  PubMed  Google Scholar 

  • Colagross A, Cockburn A (1993) Vigilance and grouping in the Eastern gray kangaroo, Macropus giganteus. Aust J Zool 41(4):325–334. doi:10.1071/ZO9930325

    Google Scholar 

  • Connell SD (2000) Is there safety-in-numbers for prey? Oikos 88(3):527–532. doi:10.1034/j.1600-0706.2000.880308.x

    Google Scholar 

  • Corten A (1999) A proposed mechanism for the Bohuslän herring periods. ICES J Mar Sci 56(2):207–220. doi:10.1006/jmsc.1998.0429

    Google Scholar 

  • Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218(1):1–11. doi:10.1006/jtbi.2002.3065

    PubMed  Google Scholar 

  • Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433(7025):513–516. doi:10.1038/nature03236

    CAS  PubMed  Google Scholar 

  • Cresswell W (1994) Flocking is an effective anti-predation strategy in redshanks, Tringa totanus. Anim Behav 47(2):433–442. doi:10.1006/anbe.1994.1057

    Google Scholar 

  • Cresswell W, Quinn JL (2010) Attack frequency, attack success and choice of prey group size for two predators with contrasting hunting strategies. Anim Behav 80(4):643–648. doi:10.1016/j.anbehav.2010.06.024

    Google Scholar 

  • Dehn M (1990) Vigilance for predators: detection and dilution effects. Behav Ecol Sociobiol 26(5):337–342. doi:10.1007/bf00171099

    Google Scholar 

  • Delcourt J, Poncin P (2012) Shoals and schools: back to the heuristic definitions and quantitative references. Rev Fish Biol Fish 22(3):595–619. doi:10.1007/s11160-012-9260-z

    Google Scholar 

  • Dommasnes A, Rey F, Røttingen I (1994) Reduced oxygen concentrations in herring wintering areas. ICES J Mar Sci 51(1):63–69. doi:10.1006/jmsc.1994.1006

    Google Scholar 

  • Elgar MA (1989) Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol Rev 64(1):13–33. doi:10.1111/j.1469-185X.1989.tb00636.x

    CAS  PubMed  Google Scholar 

  • Fernö A, Pitcher TJ, Melle W, Nøttestad L, Mackinson S, Hollingworth C, Misund OA (1998) The challenge of the herring in the Norwegian sea: making optimal collective spatial decisions. Sarsia 83(2):149–167. doi:10.1080/00364827.1998.10413679

    Google Scholar 

  • Foster WA, Treherne JE (1981) Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature 293(5832):466–467

    Google Scholar 

  • Fréon P, Gerlotto F, Soria M (1992) Changes in school structure according to external stimuli: description and influence on acoustic assessment. Fish Res 15(1–2):45–66. doi:10.1016/0165-7836(92)90004-d

    Google Scholar 

  • Freon P, Gerlotto F, Soria M (1993) Variability of Harengula spp. school reactions to boats or predators in shallow water. ICES Mar Sci Symp 196:30–35

    Google Scholar 

  • Fréon P, Gerlotto F, Soria M (1996) Diel variability of school structure with special reference to transition periods. ICES J Mar Sci 53(2):459–464. doi:10.1006/jmsc.1996.0065

    Google Scholar 

  • Gautrais J, Ginelli F, Fournier R, Blanco S, Soria M, Chaté H, Theraulaz G (2012) Deciphering interactions in moving animal groups. PLoS Comp Biol 8(9):e1002678. doi:10.1371/journal.pcbi.1002678

    CAS  Google Scholar 

  • Gerlotto F, Paramo J (2003) The three-dimensional morphology and internal structure of clupeid schools as observed using vertical scanning multibeam sonar. Aquat Living Resour 16(3):113–122. doi:10.1016/S0990-7440(03)00027-5

    Google Scholar 

  • Gerlotto F, Castillo J, Saavedra A, Barbieri MA, Espejo M, Cotel P (2004) Three-dimensional structure and avoidance behaviour of anchovy and common sardine schools in central southern Chile. ICES J Mar Sci 61(7):1120–1126. doi:10.1016/j.icesjms.2004.07.017

    Google Scholar 

  • Gerlotto F, Bertrand S, Bez N, Gutierrez M (2006) Waves of agitation inside anchovy schools observed with multibeam sonar: a way to transmit information in response to predation. ICES J Mar Sci 63(8):1405–1417. doi:10.1016/j.icesjms.2006.04.023

    Google Scholar 

  • Giardina I (2008) Collective behavior in animal groups: theoretical models and empirical studies. HFSP J 2(4):205–219. doi:10.2976/1.2961038

    PubMed Central  PubMed  Google Scholar 

  • Giraldeau LA, Beauchamp G (1999) Food exploitation: searching for the optimal joining policy. Trends Ecol Evol 14(3):102–106

    PubMed  Google Scholar 

  • Giraldeau L-A, Caraco T (2000) Social foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Goldbogen JA, Calambokidis J, Shadwick RE, Oleson EM, McDonald MA, Hildebrand JA (2006) Kinematics of foraging dives and lunge-feeding in fin whales. J Exp Biol 209(7):1231–1244. doi:10.1242/jeb.02135

    PubMed  Google Scholar 

  • Goldbogen JA, Calambokidis J, Croll DA, Harvey JT, Newton KM, Oleson EM, Schorr G, Shadwick RE (2008) Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge. J Exp Biol 211(23):3712–3719. doi:10.1242/jeb.023366

    PubMed  Google Scholar 

  • Grünbaum D (1998) Schooling as a strategy for taxis in a noisy environment. Evol Ecol 12(5):503–522. doi:10.1023/a:1006574607845

    Google Scholar 

  • Hamblin S, Mathot KJ, Morand-Ferron J, Nocera JJ, Rieucau G, Giraldeau L-A (2010) Predator inadvertent social information use favours reduced clumping of its prey. Oikos 119(2):286–291. doi:10.1111/j.1600-0706.2009.17400.x

    Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31(2):295–311. doi:10.1016/0022-5193(71)90189-5

    CAS  PubMed  Google Scholar 

  • Handegard NO, Boswell KM, Ioannou CC, Leblanc SP, Tjøstheim DB, Couzin ID (2012) The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr Biol 22(13):1213–1217. doi:10.1016/j.cub.2012.04.050

    CAS  PubMed  Google Scholar 

  • Hemelrijk CK, Hildenbrandt H (2012) Schools of fish and flocks of birds: their shape and internal structure by self-organization. Interface Focus 2(6):726–737. doi:10.1098/rsfs.2012.0025

    PubMed Central  PubMed  Google Scholar 

  • Hemelrijk CK, Reid DAP, Hildenbrandt H, Padding JT (2014) The increased efficiency of fish swimming in a school. Fish Fish:n/a-n/a. doi:10.1111/faf.12072

    Google Scholar 

  • Hensor EMA, Godin JGJ, Hoare DJ, Krause J (2003) Effects of nutritional state on the shoaling tendency of banded killifish, Fundulus diaphanus, in the field. Anim Behav 65(4):663–669. doi:10.1006/anbe.2003.2075

    Google Scholar 

  • Herbert-Read JE, Perna A, Mann RP, Schaerf TM, Sumpter DJT, Ward AJW (2011) Inferring the rules of interaction of shoaling fish. Proc Natl Acad Sci USA 108(46):18726–18731. doi:10.1073/pnas.1109355108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoare DJ, Couzin ID, Godin JGJ, Krause J (2004) Context-dependent group size choice in fish. Anim Behav 67(1):155–164. doi:10.1016/j.anbehav.2003.04.004

    Google Scholar 

  • Holmin AJ, Handegard NO, Korneliussen RJ, Tjostheim D (2012) Simulations of multi-beam sonar echos from schooling individual fish in a quiet environment. J Acoust Soc Am 132(6):3720–3734

    PubMed  Google Scholar 

  • Huse G, Railsback S, Fernö A (2002) Modelling changes in migration pattern of herring: collective behaviour and numerical domination. J Fish Biol 60(3):571–582. doi:10.1111/j.1095-8649.2002.tb01685.x

    Google Scholar 

  • Inman AJ, Krebs J (1987) Predation and group living. Trends Ecol Evol 2(2):31–32. doi:10.1016/0169-5347(87)90093-0

    Google Scholar 

  • Ioannou CC, Krause J (2008) Searching for prey: the effects of group size and number. Anim Behav 75(4):1383–1388. doi:10.1016/j.anbehav.2007.09.012

    Google Scholar 

  • Ioannou CC, Tosh CR, Neville L, Krause J (2008) The confusion effect—from neural networks to reduced predation risk. Behav Ecol 19(1):126–130. doi:10.1093/beheco/arm109

    Google Scholar 

  • Ioannou CC, Morrell LJ, Ruxton GD, Krause J (2009) The effect of prey density on predators: conspicuousness and attack success are sensitive to spatial scale. Am Nat 173:499–506

    PubMed  Google Scholar 

  • Ioannou CC, Bartumeus F, Krause J, Ruxton GD (2011a) Unified effects of aggregation reveal larger prey groups take longer to find. Proc R Soc B Biol Sci 278(1720):2985–2990. doi:10.1098/rspb.2011.0003

    Google Scholar 

  • Ioannou CC, Couzin ID, James R, Croft DP, Krause J (2011b) Social organisation and information transfer in schooling fish. In: Brown C, Laland KN, Krause J (eds) Fish cognition and behavior. Blackwell Publishing Ltd, Oxford, pp 217–239

    Google Scholar 

  • Ioannou CC, Guttal V, Couzin ID (2012) Predatory fish select for coordinated collective motion in virtual prey. Science 337(6099):1212–1215. doi:10.1126/science.1218919

    CAS  PubMed  Google Scholar 

  • Jonsgård Å (1966) Biology of the North Atlantic fin whale Balaenoptera physalus (L.): taxonomy, distribution, migration and food. Hvalrdets Skr 49:1–62

    Google Scholar 

  • Katz Y, Tunstrøm K, Ioannou CC, Huepe C, Couzin ID (2011) Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci USA 108(46):18720–18725. doi:10.1073/pnas.1107583108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krakauer DC (1995) Groups confuse predators by exploiting perceptual bottlenecks: a connectionist model of the confusion effect. Behav Ecol Sociobiol 36(6):421–429. doi:10.1007/bf00177338

    Google Scholar 

  • Krause J (1994) Differential fitness returns in relation to spatial position in groups. Biol Rev 69(2):187–206. doi:10.1111/j.1469-185X.1994.tb01505.x

    CAS  PubMed  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. vol Oxford series in ecology and evolution. Oxford University Press, USA

    Google Scholar 

  • Krause J, Tegeder RW (1994) The mechanism of aggregation behaviour in fish shoals: individuals minimize approach time to neighbours. Anim Behav 48(2):353–359. doi:10.1006/anbe.1994.1248

    Google Scholar 

  • Kunz H, Hemelrijk CK (2012) Simulations of the social organization of large schools of fish whose perception is obstructed. Appl Anim Behav Sci 138(3–4):142–151. doi:10.1016/j.applanim.2012.02.002

    Google Scholar 

  • Landeau L, Terborgh J (1986) Oddity and the ‘confusion effect’ in predation. Anim Behav 34(5):1372–1380. doi:10.1016/s0003-3472(86)80208-1

    Google Scholar 

  • Langård L, Fatnes O, Johannessen A, Skaret G, Axelsen B, Nøttestad L, Slotte A, Jensen K, Fernö A (2014) State-dependent spatial and intra-school dynamics in pre-spawning herring Clupea harengus in a semi-enclosed ecosystem. Mar Ecol Prog Ser 501:251–263. doi:10.3354/meps10718

    Google Scholar 

  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206(6):1059–1073. doi:10.1242/jeb.00209

    PubMed  Google Scholar 

  • Lima SL (1995a) Back to the basics of anti-predatory vigilance: the group-size effect. Anim Behav 49(1):11–20. doi:10.1016/0003-3472(95)80149-9

    Google Scholar 

  • Lima SL (1995b) Collective detection of predatory attack by social foragers: fraught with ambiguity? Anim Behav 50(4):1097–1108. doi:10.1016/0003-3472(95)80109-x

    Google Scholar 

  • Lima SL (2002) Putting predators back into behavioral predator–prey interactions. Trends Ecol Evol 17(2):70–75. doi:10.1016/s0169-5347(01)02393-x

    Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68(4):619–640. doi:10.1139/z90-092

    Google Scholar 

  • Lima SL, Zollner PA (1996) Anti-predatory vigilance and the limits to collective detection: visual and spatial separation between foragers. Behav Ecol Sociobiol 38(5):355–363. doi:10.1007/s002650050252

    Google Scholar 

  • Lukeman R, Li Y-X, Edelstein-Keshet L (2010) Inferring individual rules from collective behavior. Proc Natl Acad Sci USA 107(28):12576–12580. doi:10.1073/pnas.1001763107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mackinson S, Nøttestad L, Guénette S, Pitcher T, Misund OA, Fernö A (1999) Cross-scale observations on distribution and behavioural dynamics of ocean feeding Norwegian spring-spawning herring (Clupea harengus L.). ICES J Mar Sci 56(5):613–626. doi:10.1006/jmsc.1999.0513

    Google Scholar 

  • Magurran AE (1986) The development of shoaling behaviour in the European minnow, Phoxinus phoxinus. J Fish Biol 29:159–169

  • Magurran AE (1990) The adaptive significance of schooling as an anti-predator defense in fish. Ann Zool Fenn 27:51–66

    Google Scholar 

  • Magurran AE, Pitcher TJ (1987) Provenance, shoal size and the sociobiology of predator-evasion behaviour in minnow shoals. Proc R Soc Lond Ser B Biol Sci 229(1257):439–465. doi:10.1098/rspb.1987.0004

    Google Scholar 

  • Major PF (1978) Predator–prey interactions in two schooling fishes, Caranx ignobilis and Stolephorus purpureus. Anim Behav 26(3):760–777. doi:10.1016/0003-3472(78)90142-2

    Google Scholar 

  • Makris NC, Ratilal P, Symonds DT, Jagannathan S, Lee S, Nero RW (2006) Fish population and behavior revealed by instantaneous continental shelf-scale imaging. Science 311(5761):660–663. doi:10.1126/science.1121756

    CAS  PubMed  Google Scholar 

  • Makris NC, Ratilal P, Jagannathan S, Gong Z, Andrews M, Bertsatos I, Godø OR, Nero RW, Jech JM (2009) Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323(5922):1734–1737. doi:10.1126/science.1169441

    CAS  PubMed  Google Scholar 

  • Marras S, Batty RS, Domenici P (2012) Information transfer and antipredator maneuvers in schooling herring. Adapt Behav 20(1):44–56. doi:10.1177/1059712311426799

  • McNamara JM, Houston AI (1992) Evolutionarily stable levels of vigilance as a function of group size. Anim Behav 43(4):641–658. doi:10.1016/s0003-3472(05)81023-1

    Google Scholar 

  • Milinski M (1977a) Do all members of a swarm suffer the same predation? Zeitschrift für Tierpsychologie 45(4):373–388. doi:10.1111/j.1439-0310.1977.tb02027.x

    Google Scholar 

  • Milinski M (1977b) Experiments on the selection by predators against spatial oddity of their prey. Zeitschrift für Tierpsychologie 43(3):311–325. doi:10.1111/j.1439-0310.1977.tb00078.x

    Google Scholar 

  • Milinski M (1984) A predator’s costs of overcoming the confusion-effect of swarming prey. Anim Behav 32(4):1157–1162. doi:10.1016/S0003-3472(84)80232-8

    Google Scholar 

  • Miller RC (1922) The significance of the gregarious habit. Ecology 3(2):122–126

    Google Scholar 

  • Misund OA (1993) Dynamics of moving masses: variability in packing density, shape, and size among herring, sprat, and saithe schools. ICES J Mar Sci 50(2):145–160. doi:10.1006/jmsc.1993.1016

    Google Scholar 

  • Misund OA (1990) Sonar observations of schooling herring: school dimensions, swimming behaviour, and avoidance of vessel and purse seine. Rapp P-V Réun Cons Int Explor Mer 189:135–146

  • Morrell LJ, Romey WL (2008) Optimal individual positions within animal groups. Behav Ecol 19(4):909–919. doi:10.1093/beheco/arn050

    Google Scholar 

  • Morrell LJ, Ruxton GD, James R (2011) The temporal selfish herd: predation risk while aggregations form. Proc R Soc B Biol Sci 278(1705):605–612. doi:10.1098/rspb.2010.1605

    Google Scholar 

  • Nøttestad L, Aksland M, Beltestad A, Fernö A, Johannessen A, Misund OA (1996) Schooling dynamics of Norwegian spring spawning herring (Clupea harengus L.) in a coastal spawning area. Sarsia 80(4):277–284

    Google Scholar 

  • Nøttestad L, Fernö A, Mackinson S, Pitcher T, Misund OA (2002) How whales influence herring school dynamics in a cold-front area of the Norwegian Sea. ICES J Mar Sci 59(2):393–400. doi:10.1006/jmsc.2001.1172

    Google Scholar 

  • Nøttestad L, Fernö A, Misund OA, Vabø R (2004) Understanding herring behaviour: linking individual decisions, school patterns and population distribution. In: Skjoldal HR, Sætre R, Fernö A, Misund OA, Røttingen I (eds) The Norwegian Sea Ecosystem. Tapir Academic Press, Trondheim

    Google Scholar 

  • Paramo J, Bertrand S, Villalobos H, Gerlotto F (2007) A three-dimensional approach to school typology using vertical scanning multibeam sonar. Fish Res 84(2):171–179. doi:10.1016/j.fishres.2006.10.023

    Google Scholar 

  • Paramo J, Gerlotto F, Oyarzun C (2010) Three dimensional structure and morphology of pelagic fish schools. J Appl Ichthyol 26(6):853–860. doi:10.1111/j.1439-0426.2010.01509.x

    Google Scholar 

  • Parker GA (1984) The producer/scrounger model and its relevance to sexuality. In: Barnard CJ (ed) Producers and scroungers: strategies of exploitation and parasitism. Chapman and Hall, London, pp 127–153

    Google Scholar 

  • Parrish JK (1989) Re-examining the selfish herd: are central fish safer? Anim Behav 38(6):1048–1053. doi:10.1016/s0003-3472(89)80143-5

    Google Scholar 

  • Parrish JK (1991) Do predators ‘shape’ fish schools: interactions between predators and their schooling prey. Neth J Zool 42(2–3):358–370. doi:10.1163/156854291x00388

    Google Scholar 

  • Parrish JK, Strand SW, Lott JL (1989) Predation on a school of flat-iron herring, Harengula thrissina. Copeia 4:1089–1091

    Google Scholar 

  • Parrish JK, Viscido SV, Grünbaum D (2002) Self-organized fish schools: an examination of emergent properties. Biol Bull 202(3):296–305

    PubMed  Google Scholar 

  • Partridge BL, Pitcher TJ (1979) Evidence against a hydrodynamic function for fish schools. Nature 279(5712):418–419

    CAS  PubMed  Google Scholar 

  • Pitcher TJ (1983) Heuristic definitions of fish shoaling behaviour. Anim Behav 31(2):611–613. doi:10.1016/S0003-3472(83)80087-6

    Google Scholar 

  • Pitcher TJ, Parrish JK (1993) The functions of shoaling behaviour. In: Pitcher TJ (ed) The behaviour of teleost fishes, vol 2. Chapman and Hall, London, pp 363–439

    Google Scholar 

  • Pitcher TJ, Partridge BL, Wardle CS (1976) A blind fish can school. Science 194(4268):963–965

    CAS  PubMed  Google Scholar 

  • Pitcher TJ, Magurran AE, Winfield IJ (1982) Fish in larger shoals find food faster. Behav Ecol Sociobiol 10(2):149–151. doi:10.1007/bf00300175

    Google Scholar 

  • Poulin R, FitzGerald GJ (1989) Shoaling as an anti-ectoparasite mechanism in juvenile sticklebacks (Gasterosteus spp.). Behav Ecol Sociobiol 24(4):251–255. doi:10.1007/bf00295205

    Google Scholar 

  • Proctor CJ, Broom M, Ruxton GD (2003) A communication-based spatial model ofantipredator vigilance. J Theor Biol 220(1):123–137. doi:10.1006/jtbi.2003.3159

    PubMed  Google Scholar 

  • Pulliam HR (1973) On the advantages of flocking. J Theor Biol 38(2):419–422

    CAS  PubMed  Google Scholar 

  • Pulliam HR, Caraco T (1984) Living in groups: is there an optimal group size? In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach, vol 2. Wiley, New York, pp 122–147

    Google Scholar 

  • Quinn TP, Fresh K (1984) Homing and straying in chinook salmon (Oncorhynchus tshawytscha) from Cowlitz river hatchery, Washington. Can J Fish Aquat Sci 41(7):1078–1082. doi:10.1139/f84-126

    Google Scholar 

  • Radakov DV (1973) Schooling in the ecology of fish. Wiley, New York

    Google Scholar 

  • Rayor L, Uetz G (1990) Trade-offs in foraging success and predation risk with spatial position in colonial spiders. Behav Ecol Sociobiol 27(2):77–85. doi:10.1007/bf00168449

    Google Scholar 

  • Reebs SG, Saulnier N (1997) The effect of hunger on shoal choice in golden shiners (Pisces: Cyprinidae, Notemigonus crysoleucas). Ethology 103(8):642–652. doi:10.1111/j.1439-0310.1997.tb00175.x

    Google Scholar 

  • Reluga TC, Viscido S (2005) Simulated evolution of selfish herd behavior. J Theor Biol 234(2):213–225. doi:10.1016/j.jtbi.2004.11.035

    PubMed  Google Scholar 

  • Rieucau G, Martin JGA (2008) Many eyes or many ewes: vigilance tactics in female bighorn sheep Ovis canadensis vary according to reproductive status. Oikos 117(4):501–506. doi:10.1111/j.0030-1299.2008.16274.x

    Google Scholar 

  • Rieucau G, Blanchard P, Martin JGA, Favreau F-R, Goldizen AW, Pays O (2012) Investigating differences in vigilance tactic use within and between the sexes in eastern grey kangaroos. PLoS ONE 7(9):e44801. doi:10.1371/journal.pone.0044801

    PubMed Central  PubMed  Google Scholar 

  • Rieucau G, Boswell KM, De Robertis A, Macaulay GJ, Handegard NO (2014) Experimental evidence of threat-sensitive collective avoidance responses in a large wild-caught herring school. PLoS ONE 9(1):e86726. doi:10.1371/journal.pone.0086726

    PubMed Central  PubMed  Google Scholar 

  • Rieucau G, De Robertis A, Boswell KM, Handegard NO (in press) School density affects the strenght of collective antipredatory responses in wild-caught herring (Clupea harengus): A simulated predator encounter experiment. J Fish Biol

  • Robinson CJ, Pitcher TJ (1989) The influence of hunger and ration level on shoal density, polarization and swimming speed of herring, Clupea harengus L. J Fish Biol 34(4):631–633. doi:10.1111/j.1095-8649.1989.tb03341.x

    Google Scholar 

  • Rode NO, Lievens EJP, Flaven E, Segard A, Jabbour-Zahab R, Sanchez MI, Lenormand T (2013) Why join groups? Lessons from parasite-manipulated Artemia. Ecol Lett. doi:10.1111/ele.12074

    PubMed  Google Scholar 

  • Ruxton GD, Jackson AL, Tosh CR (2007) Confusion of predators does not rely on specialist coordinated behavior. Behav Ecol 18(3):590–596. doi:10.1093/beheco/arm009

    Google Scholar 

  • Sfakiotakis M, Lane DM, Davis JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252

    Google Scholar 

  • Sibly RM (1983) Optimal group size is unstable. Anim Behav 31(3):947–948. doi:10.1016/S0003-3472(83)80250-4

    Google Scholar 

  • Simons AM (2004) Many wrongs: the advantage of group navigation. Trends Ecol Evol 19(9):453–455. doi:10.1016/j.tree.2004.07.001

    PubMed  Google Scholar 

  • Skaret G, Nøttestad L, Fernö A, Johannessen A, Axelsen BE (2003) Spawning of herring: day or night, today or tomorrow? Aquat Living Resour 16(03):299–306. doi:10.1016/S0990-7440(03)00006-8

    Google Scholar 

  • Sogard SM, Olla BL (1997) The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock Theragra chalcogramma. Environ Biol Fishes 50(4):405–413. doi:10.1023/a:1007393307007

    Google Scholar 

  • Soria M, Bahri T, Gerlotto F (2003) Effect of external factors (environment and survey vessel) on fish school characteristics observed by echosounder and multibeam sonar in the Mediterranean Sea. Aquat Living Resour 16(3):145–157. doi:10.1016/s0990-7440(03)00025-1

    Google Scholar 

  • Stankowich T (2003) Marginal predation methodologies and the importance of predator preferences. Anim Behav 66(3):589–599. doi:10.1006/anbe.2003.2232

    Google Scholar 

  • Strandburg-Peshkin A, Twomey CR, Bode NWF, Kao AB, Katz Y, Ioannou CC, Rosenthal SB, Torney CJ, Wu HS, Levin SA, Couzin ID (2013) Visual sensory networks and effective information transfer in animal groups. Curr Biol 23(17):R709–R711. doi:10.1016/j.cub.2013.07.059

    CAS  PubMed  Google Scholar 

  • Torney C, Neufeld Z, Couzin ID (2009) Context-dependent interaction leads to emergent search behavior in social aggregates. Proc Natl Acad Sci USA 106(52):22055–22060. doi:10.1073/pnas.0907929106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tosh CR (2011) Which conditions promote negative density dependent selection on prey aggregations? J Theor Biol 281(1):24–30. doi:10.1016/j.jtbi.2011.04.014

    PubMed  Google Scholar 

  • Tosh CR, Jackson AL, Ruxton GD (2006) The confusion effect in predatory neural networks. Am Nat 167(2):E52–E65. doi:10.1086/499413

    PubMed  Google Scholar 

  • Treherne JE, Foster WA (1981) Group transmission of predator avoidance behaviour in a marine insect: the trafalgar effect. Anim Behav 29(3):911–917. doi:10.1016/s0003-3472(81)80028-0

    Google Scholar 

  • Tunstrøm K, Katz Y, Ioannou CC, Huepe C, Lutz MJ, Couzin ID (2013) Collective states, multistability and transitional behavior in schooling fish. PLoS Comp Biol 9:e1002915

    Google Scholar 

  • Turner GF, Pitcher TJ (1986) Attack abatement - A model for group protection by combined avoidance and dilution. Am Nat 128(2):228–240. doi:10.1086/284556

    Google Scholar 

  • Vabø R, Nøttestad L (1997) An individual based model of fish school reactions: predicting antipredator behaviour as observed in nature. Fish Oceanogr 6(3):155–171. doi:10.1046/j.1365-2419.1997.00037.x

    Google Scholar 

  • Vabø R, Skaret G (2008) Emerging school structures and collective dynamics in spawning herring: a simulation study. Ecol Model 214(2–4):125–140. doi:10.1016/j.ecolmodel.2008.01.026

    Google Scholar 

  • Vine I (1971) Risk of visual detection and pursuit by a predator and the selective advantage of flocking behaviour. J Theor Biol 30(2):405–422. doi:10.1016/0022-5193(71)90061-0

    CAS  PubMed  Google Scholar 

  • Viscido SV, Miller M, Wethey DS (2002) The dilemma of the selfish herd: the search for a realistic movement rule. J Theor Biol 217(2):183–194. doi:10.1006/jtbi.2002.3025

    PubMed  Google Scholar 

  • Viscido SV, Parrish JK, Grünbaum D (2005) The effect of population size and number of influential neighbors on the emergent properties of fish schools. Ecol Model 183(2–3):347–363. doi:10.1016/j.ecolmodel.2004.08.019

    Google Scholar 

  • Viscido SV, Parrish JK, Grünbaum D (2007) Factors influencing the structure and maintenance of fish schools. Ecol Model 206(1–2):153–165. doi:10.1016/j.ecolmodel.2007.03.042

    Google Scholar 

  • Weihs D (1973) Hydromechanics of fish schooling. Nature 241(5387):290–291

    Google Scholar 

Download references

Acknowledgments

This work was financed by the Norwegian Research Council (Grant 204229/F20). CCI was supported by a Leverhulme Trust Early Career Fellowship and a NERC Independent Research Fellowship. We thank Lise Doksæter, Olav Rune Godø, Egil Ona, Espen Johnsen for providing us with helpful comments on this manuscript. We are also grateful to Graeme Ruxton and Iain Couzin for comments while we were developing the original idea of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Rieucau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieucau, G., Fernö, A., Ioannou, C.C. et al. Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish. Rev Fish Biol Fisheries 25, 21–37 (2015). https://doi.org/10.1007/s11160-014-9367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-014-9367-5

Keywords

Navigation