Skip to main content

Advertisement

Log in

Differential invasion success of salmonids in southern Chile: patterns and hypotheses

  • Research Paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Biological invasions create complex ecological and societal issues worldwide. Most of the knowledge about invasions comes only from successful invaders, but less is known about which processes determine the differential success of invasions. In this review, we develop a framework to identify the main dimensions driving the success and failure of invaders, including human influences, characteristics of the invader, and biotic interactions. We apply this framework by contrasting hypotheses and available evidence to explain variability in invasion success for 12 salmonids introduced to Chile. The success of Oncorhynchus mykiss and Salmo trutta seems to be influenced by a context-specific combination of their phenotypic plasticity, low ecosystem resistance, and propagule pressure. These well-established invaders may limit the success of subsequently introduced salmonids, with the possible exception of O. tshawytscha, which has a short freshwater residency and limited spatial overlap with trout. Although propagule pressure is high for O. kisutch and S. salar due to their intensive use in aquaculture, their lack of success in Chile may be explained by environmental resistance, including earlier spawning times than in their native ranges, and interactions with previously established and resident Rainbow Trout. Other salmonids have also failed to establish, and they exhibit a suite of ecological traits, environmental resistance, and limited propagule pressure that are variably associated with their lack of success. Collectively, understanding how the various drivers of invasion success interact may explain the differential success of invaders and provide key guidance for managing both positive and negative outcomes associated with their presence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alarcón PAE, Macchi PJ, Trejo A, Alonso MF (2012) Diet of the neotropical cormorant (Phalacrocorax brasilianus) in a Patagonian freshwater environment invaded by exotic fish. Waterbirds 35:149–153

    Google Scholar 

  • Arenas J (1978) Análisis de la alimentación de Salmo gairdnieri Richardson en el lago Riñihue y río San Pedro, Chile. Medio Ambiente 3:50–58

    Google Scholar 

  • Arismendi I (2009) The success of non-native salmon and trout in southern Chile: human, environmental and invader dimensions in a conceptual model of biological invasion processes. Dissertation, Universidad Austral de Chile, Valdivia, Chile

  • Arismendi I, Nahuelhual L (2007) Non-native salmon and trout recreational fishing in Lake Llanquihue, southern Chile: economic benefits and management implications. Rev Fish Sci 15:311–325

    Google Scholar 

  • Arismendi I, Soto D (2012) Are salmon-derived nutrients being incorporated in food webs of invaded streams? Evidence from southern Chile. Knowl Manag Aquat Ecosyst 405:01

    Google Scholar 

  • Arismendi I, Soto D, Penaluna B, Jara C, Leal C, León-Muñoz J (2009) Aquaculture, non-native salmonid invasions and associated declines of native fishes in northern Patagonian lakes. Freshw Biol 54:1135–1147

    CAS  Google Scholar 

  • Arismendi I, Penaluna B, Soto D (2011a) Body condition indices as a rapid assessment of the abundance of introduced salmonids in oligotrophic lakes of southern Chile. Lake Reserv Manag 27:61–69

    CAS  Google Scholar 

  • Arismendi I, Sanzana J, Soto D (2011b) Seasonal age distributions of introduced resident Rainbow Trout (Oncorhynchus mykiss Walbaum) reveal lake-inlet fish movements in southern Chile. Int J Limnol 47:133–140

    Google Scholar 

  • Arismendi I, González J, Soto D, Penaluna B (2012) Piscivory and diet overlap between two non-native fishes in southern Chile. Austral Ecol 37:346–354

    Google Scholar 

  • Armstrong JD, Kemp PS, Kennedy GJA, Ladle M, Milner NJ (2003) Habitat requirements of Atlantic Salmon and Brown Trout in rivers and streams. Fish Res 62:143–170

    Google Scholar 

  • Astorga MP, Valenzuela C, Arismendi I, Iriarte JL (2008) Naturalized Chinook Salmon in the northern Chilean Patagonia: do they originate from salmon farming? Rev Biol Mar Oceanogr 43:669–674

    Google Scholar 

  • Baroudy E, Elliott JM (1994) Tolerance of parr of Arctic Charr, Salvelinus alpinus, to reduced dissolved oxygen concentrations. J Fish Biol 44:736–738

    Google Scholar 

  • Basulto S (2003) El largo viaje de los salmones. Una crónica olvidada, Maval Editorial, Santiago de Chile

  • Becker LA, Pascual MA, Basso NG (2007) Colonization of the southern Patagonia ocean by exotic Chinook Salmon. Conserv Biol 21:1347–1352

    PubMed  Google Scholar 

  • Bell G, Gonzalez A (2009) Evolutionary rescue can prevent extinction following environmental change. Ecol Lett 12:942–948

    PubMed  Google Scholar 

  • Best RJ, Arcese P (2009) Exotic herbivores directly facilitate the exotic grasses they graze: mechanisms for an unexpected positive feedback between invaders. Oecologia 159:139–150

    PubMed  Google Scholar 

  • Bondad-Reantaso MG, Arthur JR, Subasinghe RP (2008) Understanding and applying risk analysis in aquaculture. FAO Fisheries and Aquaculture Technical Paper 519, Rome, Italy, 304 pp

  • Bravo S, Nuñez M, Silva MT (2013) Efficacy of the treatments used for the control of Caligus rogercresseyi infecting Atlantic Salmon, Salmo salar L., in a new fish-farming location in Region XI, Chile. J Fish Dis 36:221–228

    CAS  PubMed  Google Scholar 

  • Burnett KM, Reeves GH, Miller DJ, Clarke S, Vance-Borland K, Christiansen K (2007) Distribution of salmon-habitat potential relative to landscape characteristics and implications for conservation. Ecol Appl 17:66–80

    PubMed  Google Scholar 

  • Buschmann AH, Riquelme VA, Hernández-González MC, Varela D, Jiménez JE, Henríquez LA, Vergara PA, Guíñez R, Filún L (2006) A review of the impacts of salmonid farming on marine coastal ecosystems in the southeast Pacific. ICES J Mar Sci 63:1338–1345

    Google Scholar 

  • Cabello FC (2007) Salmon aquaculture and transmission of the fish tapeworm. Emerg Infect Dis 13:169–171

    PubMed Central  PubMed  Google Scholar 

  • Cadwallader PL (1996) Overview of the impacts of introduced salmonids on Australian native fauna. Australian Nature Conservation Agency, BPD Graphic Associates, Canberra

    Google Scholar 

  • Campos H (1984) Limnological study of Araucanian lakes (Chile). Verh Int Verein Limnol 22:1319–1327

    CAS  Google Scholar 

  • Campos H (1985) Distribution of the fishes in the Andean rivers in the South of Chile. Arch Hydrobiol 104:169–191

    Google Scholar 

  • Campos H, Arenas J, Steffen W, Aguero G, Villalobos L, Gonzalez G (1986) Investigación de la capacidad de carga para el cultivo de salmonídeos de las hoyas hidrográficas del país. II Antecedentes limnológicos hoya lago Villarrica. CORFO AP 86/28. Santiago, Chile

  • Campos H, Dazarola G, Dyer B, Fuentes L, Gavilán J, Huaquín L, Martínez G, Menéndez R, Pequeño G, Ponce F, Ruiz V, Sielfeld W, Soto D, Vega R, Vila I (1998) Categorías de conservación de peces nativos de aguas continentales de Chile. Boletín del Museo Nacional de Historia Natural (Chile) 47:101–222

    Google Scholar 

  • Carvajal J, González L, George-Nascimento M (1998) Native sea lice (Copepoda: Caligidae) infestation of salmonids reared in netpen systems in southern Chile. Aquaculture 66:241–246

    Google Scholar 

  • Casal C (2006) Global documentation of fish introductions: the growing crisis and recommendations for action. Biol Invasions 8:3–11

    Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: interspecific interactions. The University of Chicago Press, Chicago

    Google Scholar 

  • Chizinski CJ, Higgins CL, Shavlik CE, Pope KL (2006) Multiple hypotheses testing of fish incidence patterns in an urbanized ecosystem. Aquat Ecol 40:97–109

    Google Scholar 

  • Colautti RI (2005) Are characteristics of introduced salmonid fishes biased by propagule pressure? Can J Fish Aquat Sci 62:950–959

    Google Scholar 

  • Colihueque N, Vergara N, Parraguez M (2003) Genetic characterization of naturalized populations of Brown Trout Salmo trutta L. in southern Chile using allozyme and microsatellite markers. Aquac Res 34:525–533

    CAS  Google Scholar 

  • Collyer MC, Stockwell CA, Adams DC, Reiser MH (2007) Phenotypic plasticity and contemporary evolution in introduced populations: evidence from translocated populations of White Sands Pupfish (Cyprinodon tularosa). Ecol Res 22:902–910

    Google Scholar 

  • Connell JH (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am Nat 122:661–696

    Google Scholar 

  • Consuegra S, Phillips N, Gajardo G, García de Leaniz C (2011) Winning the invasion roulette: escapes from fish farms increase admixture and facilitate establishment of non-native Rainbow Trout. Evol Appl 4:660–671

    PubMed Central  Google Scholar 

  • Correa C, Gross MR (2008) Chinook Salmon invade southern South America. Biol Invasions 10:615–639

    Google Scholar 

  • Correa C, Hendry AP (2012) Invasive salmonids and lake order interact in the decline of Puye Grande Galaxias platei in western Patagonian lakes. Ecol Appl 22:828–842

    PubMed  Google Scholar 

  • Correa C, Bravo AP, Hendry AP (2012) Reciprocal trophic niche shifts in native and invasive fish: salmonids and galaxiids in Patagonian lakes. Freshw Biol 57:1769–1781

    Google Scholar 

  • Crawford SS (2001) Salmonine introductions to the Laurentian Great Lakes: an historical review and evaluation of ecological effects. Canadian Special Publication of Fisheries and Aquatic Sciences 132, National Research Council Canada Monograph Series, NRC Research Press, Ottawa, Canada

  • Crawford SS, Muir AM (2008) Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Rev Fish Biol Fish 18:313–344

    Google Scholar 

  • Crowder LB, Squires DD, Rice JA (1997) Nonadditive effects of terrestrial and aquatic predators on juvenile estuarine fish. Ecology 78:1796–1804

    Google Scholar 

  • Crowl TA, Towsend CR, McIntosh A (1992) The impact of introduced Brown and Rainbow Trout on native fish: the case of Australasia. Rev Fish Biol Fish 2:217–241

    Google Scholar 

  • Cutts CJ, Metcalfe NB, Taylor AC (1999) Competitive asymmetries in territorial juvenile Atlantic Salmon, Salmo salar. Oikos 86:479–486

    Google Scholar 

  • Davidson FA, Hutchinson SJ (1938) The geographic distribution and environmental limitations of the Pacific salmon (Genus Oncorhynchus). Bull Bureau Fish 48(26):667–692

    Google Scholar 

  • DeVries P (1997) Riverine salmonid egg burial depths: review of published data and implications for scour studies. Can J Fish Aquat Sci 54:1685–1698

    Google Scholar 

  • Di Prinzio CY, Pascual MA (2008) The establishment of exotic Chinook Salmon (Oncorhynchus tshawytscha) in Pacific rivers of Chubut, Patagonia, Argentina. Int J Limnol 1:61–68

    Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    CAS  PubMed  Google Scholar 

  • Dunham JB, Adams SB, Schroeter R, Novinger DC (2002) Alien invasions in aquatic ecosystems: toward an understanding of Brook Trout invasions and potential impacts on inland cutthroat trout in western North America. Rev Fish Biol Fish 12:373–391

    Google Scholar 

  • Dunham JB, Pilliod DS, Young MK (2004) Assessing the consequences of nonnative trout in headwater ecosystems in western North America. Fisheries 29:18–26

    Google Scholar 

  • Dyer B (2000) Systematic review and biogeography of the freshwater fishes of Chile. Estudios Oceanológicos 19:77–98

    Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80

    Google Scholar 

  • Elliott JM (1991) Tolerance and resistance to thermal stress in juvenile Atlantic Salmon, Salmo salar. Freshw Biol 25:61–70

    Google Scholar 

  • Elliott JM (1994) Quantitative ecology and the brown trout. Oxford University Press, New York

    Google Scholar 

  • Elton CS (1927) Animal ecology. Sidgwick and Jackson, London

    Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  • Facon B, Genton BJ, Shykoff J, Jarne P, Estoup A, David P (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol Evol 21:130–135

    PubMed  Google Scholar 

  • Faundez V, Blanco G, Vásquez E, Sánchez JE (1997) Allozyme variability in Brown Trout Salmo trutta in Chile. Freshw Biol 37:507–514

    CAS  Google Scholar 

  • Fausch KD (2007) Introduction, establishment and effects of non-native salmonids: considering the risk of Rainbow Trout invasion in the United Kingdom. J Fish Biol 71:1–32

    Google Scholar 

  • Fausch KD, White RJ (1986) Competition among juveniles of Coho Salmon, Brook Trout, and Brown Trout in a laboratory stream, and implications for Great Lakes tributaries. Trans Am Fish Soc 115:363–381

    Google Scholar 

  • Fausch KD, Rieman BE, Young MK, Dunham JB (2006) Strategies for conserving native salmonid populations at risk from nonnative fish invasions: tradeoffs in using barriers to upstream movement. Gen. Tech. Rep. RMRS-GTR-174. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA

  • Figueroa R, Ruiz VH, Berrios P, Palma A, Villegas P, Andreu-Soler A (2010) Trophic ecology of native and introduced fish species from the Chillán River, South-Central Chile. J Appl Ichthyol 26:78–83

    Google Scholar 

  • Fleming IA (1998) Pattern and variability in the breeding system of Atlantic Salmon, with comparisons to other salmonids. Can J Fish Aquat Sci 55:59–76

    Google Scholar 

  • Fleming IA, Petersson E (2001) The ability of released, hatchery salmonids to breed and contribute to the natural productivity of wild populations. Nord J Freshw Res 75:71–98

    Google Scholar 

  • Fleming IA, Hindar K, Mjølnerød IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. Proc R Soc B Sci 267:1517–1524

    CAS  Google Scholar 

  • Gajardo G (1997) Caracterización genética, hematológica y química sanguínea de salmónidos silvestres y de cultivo. Informe Final FIP 95-35. Valparaiso, Chile

  • Gajardo G, Laikre L (2003) Chilean aquaculture boom is based on exotic salmon resources: a conservation paradox. Conserv Biol 17:1173–1174

    Google Scholar 

  • Gajardo G, Diaz O, Crespo JE (1998) Allozymic variation and differentiation in naturalized populations of Rainbow Trout, Oncorhynchus mykiss (Walbaum), from southern Chile. Aquac Res 29:785–790

    Google Scholar 

  • García de Leaniz C, Gajardo G, Consuegra S (2010) From best to pest: changing perspectives on the impact of exotic salmonids in the Southern Hemisphere. Syst Biodivers 8:447–459

    Google Scholar 

  • García-Berthou E (2007) The characteristics of invasive fishes: what has been learned so far? J Fish Biol 71:33–55

    Google Scholar 

  • Glova GJ (2003) A test for interaction between Brown Trout (Salmo trutta) and Inanga (Galaxias maculatus) in an artificial stream. Ecol Freshw Fish 12:247–253

    Google Scholar 

  • Godoy M, Kibene F, Aedo A, Kibenge M, Groman D, Grothusen H, Lisperguer A, Calbucura M, Avendano F, Imilan M, Jarpa M (2008) Primera Detección, Aislamiento y Caracterización Molecular de ISA-v en Salmón del Atlántico (Salmo salar) de Cultivo en Chile. Salmociencia 2:47–55

    Google Scholar 

  • Golusda P (1907) La introducción del salmón en Chile. Anales Agronómicos, Santiago

    Google Scholar 

  • González A, Victoriano P (2005) Aves de los humedales costeros de la zona de Concepción y alrededores. In: Smith-Ramírez C, Armesto J, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago, pp 485–497

    Google Scholar 

  • Gozlan RE (2008) Introduction of non-native freshwater fish: is it all bad? Fish Fish 9:106–115

    Google Scholar 

  • Grant JWA, Steingrímsson SÓ, Keeley ER, Cunjak RA (1998) Implications of territory size for the measurement and prediction of salmonid abundance in streams. Can J Fish Aquat Sci 55:181–190

    Google Scholar 

  • Griffen BD, Guy T, Buck JC (2008) Inhibition between invasives: a newly introduced predator moderates the impacts of a previously established invasive predator. J Anim Ecol 77:32–40

    PubMed  Google Scholar 

  • Grinnell J (1917) The niche-relationships of the California Thrasher. Auk 34:427–433

    Google Scholar 

  • Grosholz ED (2005) Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proc Natl Acad Sci USA 102:1088–1091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gruner DS (2005) Biotic resistance to an invasive spider conferred by generalist insectivorous birds on Hawaii Island. Biol Invasions 7:541–546

    Google Scholar 

  • Habit E, Dyer B, Vila I (2006) Estado de conocimiento de los peces dulceacuícolas de Chile. Gayana 70:100–112

    Google Scholar 

  • Habit E, Gonzalez J, Ruzzante DE, Walde SJ (2012) Native and introduced fish species richness in Chilean Patagonian lakes: inferences on invasion mechanisms using salmonid-free lakes. Divers Distrib. doi:10.1111/j.1472-4642.2012.00906.x

    Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Google Scholar 

  • Heger T, Trepl L (2003) Predicting biological invasions. Biol Invasions 5:313–321

    Google Scholar 

  • Hill MS, Zydlewski GB, William L (2006) Comparisons between hatchery and wild steelhead trout (Oncorhynchus mykiss) smolts: physiology and habitat use. Can J Fish Aquat Sci 63:1627–1638

    CAS  Google Scholar 

  • Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA 106:19659–19665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huntingford FA, Garcia de Leaniz C (1997) Social dominance, prior residence and the acquisition of profitable feeding sites in juvenile Atlantic Salmon. J Fish Biol 51:1009–1014

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427

    Google Scholar 

  • Jensen Ø, Dempster T, Thorstad EB, Uglem I, Fredheim A (2010) Escapes of fishes from Norwegian sea-cage aquaculture: causes, consequences and prevention. Aquac Environ Interact 1:71–83

    Google Scholar 

  • Johnson PTJ, Olden JD, Solomon CT, Vander Zanden MJ (2009) Interactions among invaders: community and ecosystem effects of multiple invasive species in an experimental aquatic system. Oecologia 159:161–170

    PubMed  Google Scholar 

  • Jonsson B, Jonsson N (2011) Ecology of Atlantic Salmon and Brown Trout: habitat as a template for life histories. Springer, New York

    Google Scholar 

  • Kaufman L (1992) Catastrophic change in species-rich freshwater ecosystems. Bioscience 42:846–858

    Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Google Scholar 

  • Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866

    PubMed  Google Scholar 

  • Keller RP, Geist J, Jeschke JM, Kühn I (2011) Invasive species in Europe: ecology, status and policy. Environ Sci Eur 23:23. doi:10.1186/2190-4715-23-23

    Google Scholar 

  • Kinnison MT, Unwin MJ, Quinn TP (2008) Eco-evolutionary versus habitat contributions to invasion: experimental evaluation in the wild. Mol Ecol 17:405–414

    PubMed  Google Scholar 

  • Kinnison MT, Quinn TP, Unwin MJ (2011) Correlated contemporary evolution of life history traits in New Zealand Chinook Salmon, Oncorhynchus tshawytscha. Heredity 106:448–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    PubMed  Google Scholar 

  • Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236

    CAS  PubMed  Google Scholar 

  • Kolbe JJ, Glor RE, Rodrı´guez L, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    CAS  PubMed  Google Scholar 

  • Krkosek M, Lewis MA, Volpe JP (2005) Transmission dynamics of parasitic sea lice from farms to wild salmon. Proc R Soc B Biol Sci 272:689–696

    Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive. Trends Ecol Evol 17(8):386–391

    Google Scholar 

  • Lee RM, Rinne JN (1980) Critical thermal maxima of five trout species in the Southwestern USA. Trans Am Fish Soc 109:632–635

    Google Scholar 

  • Leprieur F, Brosse S, García-Berthou E, Oberdorff T, Olden JD, Townsend CR (2009) Scientific uncertainty and the assessment of risks posed by non-native freshwater fishes. Fish Fish 10:88–97

    Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    PubMed  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2006) Invasion ecology. Blackwell Scientific Press, Oxford

    Google Scholar 

  • Lucek KR, Bezault D, Sivasundar E, Seehausen A (2010) Hybridization between distant lineages increases adaptive variation during a biological invasion: stickleback in Switzerland. Mol Ecol 19:3995–4011

    PubMed  Google Scholar 

  • Macchi PJ, Vigliano PH, Pascual MA, Alonso M, Denegri MA, Milano D, Garcia Asorey M, Lippolt G (2008) Historical policy goals for fish management in northern continental Patagonia Argentina: a structuring force of actual fish assemblages? Am Fish Soc Symp 49:331–348

    Google Scholar 

  • MacCrimmon HR, Gots BL (1979) World distribution of Atlantic Salmon, Salmo salar. J Fish Res Board Can 36:422–457

    Google Scholar 

  • MacCrimmon HR, Marshall TL (1968) World distribution of Brown Trout, Salmo trutta. J Fish Res Board Can 25:2527–2548

    Google Scholar 

  • MacIsaac HJ, Grigorovich IA, Ricciardi A (2001) Reassessment of species invasions concepts: the Great Lakes basin as a model. Biol Invasions 3:405–416

    Google Scholar 

  • Marr SM, Marchetti MP, Olden JD, García-Berthou E, Morgan DL, Arismendi I, Day JA, Griffiths CL, Skelton PH (2010) Freshwater fish introductions in Mediterranean-climate regions: are there commonalities in the conservation problem? Divers Distrib 16:606–619

    Google Scholar 

  • Marr SM, Olden JD, Leprieur F, Arismendi I, Ćaleta M, Morgan DL, Nocita A, Šanda R, Tarkan AS, García-Berthou E (2013) A global assessment of freshwater fish introductions in Mediterranean-climate regions. Hydrobiologia. doi:10.1007/s10750-013-1486-9

    Google Scholar 

  • Martin PH, Canham CD, Marks PL (2009) Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Front Ecol Environ 7:142–149

    Google Scholar 

  • Maynard Smith J, Parker GA (1976) The logic of asymmetric contests. Anim Behav 24:159–175

    Google Scholar 

  • McCullough DA (1999) A review and synthesis of effects of alterations to the water temperature regime on freshwater life stages of salmonids, with special reference to Chinook Salmon. Columbia Intertribal Fisheries Commission. US Environmental Protection Agency Region 10, EPA 910-R-99-010, Portland, OR, USA

  • McDowall RM (1997) The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis. Rev Fish Biol Fish 7:443–462

    Google Scholar 

  • McDowall RM (2006) Crying wolf, crying foul, or crying shame: alien salmonids and a biodiversity crisis in the southern cool-temperate galaxioid fishes? Rev Fish Biol Fish 16:233–422

    Google Scholar 

  • McGinnity P, Prodohl P, Ferguson A, Hynes R, Ó Maoileidigh N, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T (2003) Fitness reduction and potential extinction of wild populations of Atlantic Salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc B Sci 270:2443–2450

    Google Scholar 

  • Medina-Vogel G (2005) Estrategia regional para la conservación del huillín (Lontra provocax) en Chile. In: Smith-Ramírez C, Armesto J, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago, pp 390–398

    Google Scholar 

  • Metcalfe NB, Valdimarsson SK, Morgan IJ (2003) The relative roles of domestication, rearing environment, prior residence and body size in deciding territorial contests between hatchery and wild juvenile salmon. J Appl Ecol 40:535–544

    Google Scholar 

  • Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740

    PubMed  Google Scholar 

  • Monzón-Argüello C, Garcia de Leaniz C, Gajardo G, Consuegra S (2013) Less can be more: loss of MHC functional diversity can reflect adaptation to novel conditions during fish invasions. Ecol Evol. doi:10.1002/ece3.701

    PubMed Central  PubMed  Google Scholar 

  • Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assembly theory. Biol Conserv 78:149–161

    Google Scholar 

  • Moyle PB, Marchetti MP (2006) Predicting invasion success: freshwater fishes in California as a model. Bioscience 56:515–524

    Google Scholar 

  • Myers JH, Simberloff D, Kuris AM, Carey JR (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15:316–320

    PubMed  Google Scholar 

  • Nash CE (1976) The Southern Ocean salmon project phases I & II. ICLARM Technical Report. Hawaii, October 1976

  • Naylor R, Hindar K, Fleming IA, Goldburg R, Williams S, Volpe J, Whoriskey F, Eagle J, Kelso D, Mangel M (2005) Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. Bioscience 55:427–437

    Google Scholar 

  • Niemeyer H, Cereceda P (1984) Hidrografía. Colección Geográfica de Chile. Tomo VIII. Instituto Geográfico Militar (IGM), Santiago

    Google Scholar 

  • Niklitschek E, Aedo E (2002) Estudio del ciclo reproductivo de las principales especies objetivo de la pesca deportiva en la XI región. Informe Proyecto FIP 2000–25, Fondo de Investigación Pesquera, Subsecretaría de Pesca, Valparaíso, Chile

  • Núñez D, Niklitschek M (2010) Caracterización de la pesca recreativa en la Patagonia chilena. Una encuesta a turistas de larga distancia en la región de Aysén. Estudios y Perspectivas en Turismo 19:83–104

    Google Scholar 

  • O’Dowd DJ, Green PT, Lake PS (2003) Invasional ‘meltdown’ on an oceanic island. Ecol Lett 6:812–817

    Google Scholar 

  • O’Neal SL, Stanford JA (2011) Partial migration in a robust Brown Trout population of a Patagonian River. Trans Am Fish Soc 140:623–635

    Google Scholar 

  • Odum E (1989) Ecology and our endangered life support systems. Sinauer Associates, Sunderland

    Google Scholar 

  • Olsson M, Shine R (2000) Ownership influences the outcome of male–male contests in the scincid lizard, Niveoscincus microlepidotus. Behav Ecol 11:587–590

    Google Scholar 

  • Pascual MA, Ciancio JE (2007) Introduced anadromous salmonids in Patagonia: risks, uses, and a conservation paradox. In: Bert TM (ed) Ecological and genetic implications of aquaculture activities. Springer, Netherlands

    Google Scholar 

  • Pascual M, Bentzen P, Rossi CR, Mackay G, Kinnison MT, Walker R (2001) First documented case of anadromy in a population of introduced Rainbow Trout in Patagonia, Argentina. Trans Am Fish Soc 130:53–67

    Google Scholar 

  • Pascual M, Macchi P, Urbanski J, Marcos F, Riva Rossi C, Novara M, Dell’Arciprete P (2002) Evaluating potential effects of exotic freshwater fish from incomplete species presence–absence data. Biol Invasions 4:101–113

    Google Scholar 

  • Pascual MA, Cussac V, Dyer B, Soto D, Vigliano P, Ortubay S, Macchi P (2007) Freshwater fishes of Patagonia in the 21st century after a hundred years of human settlement, species introductions, and environmental change. Aquat Ecosyst Health 10:212–227

    Google Scholar 

  • Penaluna B, Arismendi I, Soto D (2009) Evidence of interactive segregation between introduced trout and native fishes in Northern Patagonian Rivers, Chile. Trans Am Fish Soc 138:839–845

    Google Scholar 

  • Perez LA, Winkler FM, Diaz NF, Carcamo C, Silva N (2001) Genetic variability in four hatchery strains of Coho Salmon, Oncorhynchus kisutch (Walbaum), in Chile. Aquac Res 32:41–46

    CAS  Google Scholar 

  • Peterson DP, Fausch KD (2003) Testing population-level mechanisms of invasion by a mobile vertebrate: a simple conceptual framework for salmonids in streams. Biol Invasions 5:239–259

    Google Scholar 

  • Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20

    Google Scholar 

  • Quinn TP, Unwin MJ (1993) Variation in life history patterns among New Zealand Chinook Salmon (Oncorhynchus tshawytscha) populations. Can J Fish Aquat Sci 50:1414–1424

    Google Scholar 

  • Quinn T, Kinnison M, Unwin M (2001) Evolution of Chinook Salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process. Genetica 112–113:493–513

    PubMed  Google Scholar 

  • Rau J, Muñoz-Pedreros A, Martínez DR (2005) Diversidad trófica de aves rapaces y mamíferos carnívoros en la Cordillera de la Costa. In: Smith-Ramírez C, Armesto J, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago, pp 537–538

    Google Scholar 

  • Ricciardi A, Atkinson SK (2004) Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol Lett 7:781–784

    Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmanek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93

    CAS  PubMed  Google Scholar 

  • Riva Rossi CM, Pascual MA, Aedo Marchant E, Basso N, Ciancio JE, Mezga B, Fernández DA, Ernst-Elizalde B (2012) The invasion of Patagonia by Chinook Salmon (Oncorhynchus tshawytscha): inferences from mitochondrial DNA patterns. Genetica 140:439–453

    CAS  PubMed  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    PubMed  Google Scholar 

  • Ross DJ, Johnson CR, Hewitt CL, Ruiz GM (2004) Interaction and impacts of two introduced species on a soft-sediment marine assemblage in SE Tasmania. Mar Biol 144:747–756

    Google Scholar 

  • Sakai M, Espinos A (1994) Repeat homing and migration of Rainbow Trout to the inlet and outlet spawning streams in a Patagonian lake, Argentina. Fish Sci 60:137–142

    Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Evol Syst 32:305–332

    Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471

    PubMed  Google Scholar 

  • Sepúlveda M, Arismendi I, Soto D, Jara F, Farias F (2013) Escaped farmed salmon and trout in Chile: incidence, impacts, and the need for an ecosystem view. Aquac Environ Interact 4:273–283

    Google Scholar 

  • Shurin JB (2001) Interactive effects of predation and dispersal on zooplankton communities. Ecology 82:3404–3416

    Google Scholar 

  • Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919

    PubMed  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32

    Google Scholar 

  • Simon KS, Townsend CR (2003) Impacts of freshwater invaders at different levels of ecological organization, with emphasis on salmonids and ecosystem consequences. Freshw Biol 48:982–994

    Google Scholar 

  • Sloat MR, Fraser DJ, Dunham JB, Falke JA, Jordan CE, McMillan JR, Ohms HA (2014) Ecological and evolutionary patterns of freshwater maturation in Pacific and Atlantic salmonines. Rev Fish Biol Fish. doi:10.1007/s11160-014-9344-z

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    PubMed  Google Scholar 

  • Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods and assumptions. Proc Natl Acad Sci USA 106:19644–19650

    PubMed Central  PubMed  Google Scholar 

  • Sol D, Maspons J, Vall-llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP (2012) Unraveling the life history of successful invaders. Science 337:580–583

    CAS  PubMed  Google Scholar 

  • Soto D (2002) Oligotrophic patterns in southern Chilean lakes: the relevance of nutrients and mixing depth. Rev Chil Hist Nat 75:77–93

    Google Scholar 

  • Soto D, Arismendi I (2005) Fauna íctica de la cuenca del Río Bueno: relevancia de los afluentes en la conservación de especies nativas. In: Smith-Ramírez C, Armesto J, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria, Santiago, pp 390–398

    Google Scholar 

  • Soto D, Stockner R (1996) Oligotrophic lakes in southern Chile and British Columbia: basis for their resilience present and future disturbances. In: Lawford RG, Alaback P, Fuentes E (eds) High latitude rain forest of the west coast of the Americas. Climate, hydrology, ecology and conservation. Springer, New York, pp 266–280

    Google Scholar 

  • Soto D, Jara F, Moreno C (2001a) Escaped salmon in the inner seas, southern Chile: facing ecological and social conflicts. Ecol Appl 11:1750–1762

    Google Scholar 

  • Soto D, Arismendi I, Sanzana J (2001b) Evaluación del potencial biológico de la pesca deportiva en la decima región. Informe Intendencia Región de los Lagos FNDR, Puerto Montt

    Google Scholar 

  • Soto D, Arismendi I, Solar I (2002) Estudio del ciclo reproductivo de las principales especies objetivo de la pesca deportiva en la X región. Informe Proyecto FIP 2000–24, Fondo de Investigación Pesquera, Subsecretaría de Pesca, Valparaíso, Chile

  • Soto D, Arismendi I, González J, Sanzana J, Jara F, Jara C, Guzmán E, Lara A (2006) Southern Chile, trout and salmon country: invasion patterns and threats for native species. Rev Chil Hist Nat 79:97–117

    Google Scholar 

  • Soto D, Arismendi I, Di Prinzio C, Jara F (2007) Establishment of Chinook Salmon (Oncorhynchus tshawytscha) in Pacific basins of Southern South America and its potential ecosystem implications. Rev Chil Hist Nat 80:81–98

    Google Scholar 

  • Steinmetz J, Kohler SL, Soluk DA (2003) Birds are overlooked top predators in aquatic food webs. Ecology 84:1324–1328

    Google Scholar 

  • Stewart L (1980) A history of migratory salmon acclimatization experiments in parts of the Southern Hemisphere and the possible effects of oceanic currents and gyres upon their outcome. Adv Mar Biol 17:397–466

    Google Scholar 

  • Thomasson K (1963) Araucanian Lakes. Plankton studies in north Patagonia with notes on terrestrial vegetation. Acta Phytogeogr Suecica 47:1–141

    Google Scholar 

  • Thorstad EB, Fleming IA, McGinnity P, Soto D, Wennevik V, Whoriskey F (2008) Incidence and impacts of escaped farmed Atlantic Salmon Salmo salar in nature. Nor Inst Nat Res Spec Rep 36:1–110

    Google Scholar 

  • Tobias J (1997) Asymmetric territorial contests in the European Robin: the role of settlement costs. Anim Behav 54:9–21

    PubMed  Google Scholar 

  • Torres A, Winkler FM, Guiñez R, Díaz N, Espejo P (1996) Variabilidad genética en una población de piscicultura de Salmón Coho (Oncorhynchus kisutch) (Walbaum, 1792) en Chile. Rev Biol Mar Oceanogr 31:11–22

    Google Scholar 

  • Torres P, Lopez JC, Cubillos V, Lobos C, Silva R (2002) Visceral diphyllobothriosis in a cultured Rainbow Trout, Oncorhynchus mykiss (Walbaum), in Chile. J Fish Dis 25:375–379

    Google Scholar 

  • Utter F (2001) Patterns of subspecific anthropogenic introgression in two salmonid genera. Rev Fish Biol Fish 10:265–279

    Google Scholar 

  • Valiente AG, Juanes F, Núñez P, García-Vazquez E (2007) Is genetic variability so important? Non-native salmonids in South America. J Fish Biol 71:136–147

    Google Scholar 

  • Valiente AG, Juanes F, Núñez P, García-Vazquez E (2010) Brown Trout (Salmo trutta) invasiveness: plasticity in life-history is more important than genetic variability. Biol Invasions 12:451–462

    Google Scholar 

  • Van Wilgen BW (2012) Evidence, perceptions, and trade-offs associated with invasive alien plant control in the Table Mountain National Park, South Africa. Ecol Soc 17:23

    Google Scholar 

  • Vander-Zanden J, Casselman M, Rasmussen JB (1999) Stable isotope evidence for food web shifts following species invasions of lakes. Nature 401:464–467

    CAS  Google Scholar 

  • Vargas PV, Arismendi I, Lara G, Millar J, Peredo S (2010) Evidencia de solapamiento de micro-hábitat entre juveniles del salmón introducido Oncorhynchus tshawytscha y el pez nativo Trichomycterus areolatus en el río Allipén, Chile. Rev Biol Marina Oceanogr 45:285–292

    Google Scholar 

  • Vila I, Zeiss E, Gibson H (1978) Prospecciones de sistemas hidrográficos para la introducción del salmón en Chile. Biología Pesquera 10:61–73

    Google Scholar 

  • Vila I, Fuentes L, Saavedra M (1999) Ictiofauna en los sistemas límnicos de la Isla Grande, Tierra del Fuego, Chile. Rev Chil Hist Nat 72:273–284

    Google Scholar 

  • Vila I, Pardo R, Dyer B, Habit E (2006) Peces límnicos: diversidad origen y estado de conservación. In: Vila I, Veloso A, Schlatter R, Ramírez C (eds) Macrófitas y vertebrados de los ecosistemas límnicos de Chile. Editorial Universitaria, Santiago, pp 73–102

    Google Scholar 

  • Vilata J, Oliva D, Sepúlveda M (2010) The predation of farmed salmon by South American sea lions (Otaria flavescens) in southern Chile. ICES J Mar Sci 67:475–482

    Google Scholar 

  • Villalobos L, Woelfl S, Parra O, Campos H (2003) Lake Chapo: a baseline study of a deep, oligotrophic North Patagonian lake prior to its use for hydroelectricity generation: II. Biological properties. Hydrobiologia 510:225–237

    Google Scholar 

  • Vitule JRS, Freire CA, Simberloff D (2009) Introduction of non-native freshwater fish can certainly be bad. Fish Fish 10:98–108

    Google Scholar 

  • Westley PAH (2011) What invasive species reveal about the rate and form of contemporary phenotypic change in nature. Am Nat 177:496–509

    PubMed  Google Scholar 

  • Westley PAH, Fleming IA (2011) Landscape factors that shape a slow and persistent aquatic invasion: brown trout in Newfoundland 1883-2010. Divers Distrib 17:566–579

    Google Scholar 

  • Westley PAH, Ward E, Fleming IA (2013a) Fine-scale local adaptation in an invasive freshwater fish has evolved in contemporary time. Proc R Soc B Sci 280:2012–2327

    Google Scholar 

  • Westley PAH, Stanley R, Fleming IA (2013b) Experimental tests for heritable morphological color plasticity in nonnative Brown Trout (Salmo trutta) populations. PLoS ONE 8(11):e80401. doi:10.1371/journal.pone.0080401

    PubMed Central  PubMed  Google Scholar 

  • Winkler FM, Bartley D, Diaz NF (1999) Genetic differences among year classes in a hatchery population of Coho Salmon (Oncorhynchus kisutch (Walbaum, 1792)) in Chile. Aquaculture 173:425–433

    Google Scholar 

  • Wonham MJ, Lewis MA, MacIsaac HJ (2005) Minimizing invasion risk by reducing propagule pressure: a model for ballastwater exchange. Front Ecol Evol 3:473–478

    Google Scholar 

  • Yonekura R, Kawamura K, Uchii K (2007) A peculiar relationship between genetic diversity and adaptability in invasive exotic species: bluegill sunfish as a model species. Ecol Res 22:911–919

    Google Scholar 

  • Young KA (2004) Asymmetric competition, habitat selection, and niche overlap in juvenile salmonids. Ecology 85:134–149

    Google Scholar 

  • Young KA, Stephenson J, Terreau A, Thailly A, Gajardo G, García de Leaniz C (2009) The diversity of juvenile salmonids does not affect their competitive impact on a native galaxiid. Biol Invasions 11:1955–1961

    Google Scholar 

  • Young KA, Dunham JB, Stephenson JF, Terreau A, Thailly AF, Gajardo G, García de Leaniz C (2010) A trial of two trouts: comparing the impacts of Rainbow and Brown Trout on a native galaxiid. Anim Conserv 13:399–410

    Google Scholar 

  • Zama A (1987) Biological observations on sea-run Brown Trout in Fiordo Aysen, Southern Chile (Pisces: Salmonidae). Rev Biol Mar Oceanogr 23:193–213

    Google Scholar 

Download references

Acknowledgments

Cristian Correa, four anonymous reviewers and the Associated Editor William Ardren provided comments that improved the manuscript. Funded by Fondo Nacional de Desarrollo Regional (FNDR Región de los Lagos); Fondo de Investigación Pesquera of Chile FIP 2000–2024; Comisión Nacional de Ciencia y Tecnología of Chile FONDECYT Grant 1020183; Millennium Nucleus Forest Ecosystem Services (FORECOS) P04-065-F Ministerio de Planificación of Chile; and, Department for Environment Food and Rural Affairs (DEFRA, UK) Darwin Initiative Grants # 162-15-020 and EIDPOC 041. Fondo de Financiamiento de Centros de Excelencia en Investigación FONDAP 15110027. Carlos Jara, Antonio Lara, Stefan Woelfl, Guillermo Giannico, and Jose Luis Iriarte provided comments on an early version of the manuscript. Tiffany Garcia and Kate Boersma provided comments on the conceptual framework figure and Kathryn Ronnenberg helped with its design. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Arismendi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

Supplementary material 2 (DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arismendi, I., Penaluna, B.E., Dunham, J.B. et al. Differential invasion success of salmonids in southern Chile: patterns and hypotheses. Rev Fish Biol Fisheries 24, 919–941 (2014). https://doi.org/10.1007/s11160-014-9351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-014-9351-0

Keywords

Navigation