Skip to main content
Log in

Application of heavy stable isotopes in mine water research

  • Web Alert
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Metal and coal mining are essential for economic development. However, the metalliferous, acidic waters often emerging from these industrial sites, may also cause significant environmental damage. Multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) was developed in the early 1990s. MC-ICP-MS allows for the first time the simultaneous detection of many heavy stable isotopes of elevated ionization potential. Here, I outline the potential of this technique to improve our understanding on the mobilization and transport of metals and the remediation of metalliferous mine waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Agricola G (ed) (1556) De Re Metallica libri XII. Dover, New York

  • Albarede F, Beard BL (2004) Analytical methods for non-traditional isotopes. In: Johnson BD, Beard BL, Albarede F (eds) Geochemistry of non-traditional stable isotopes, vol 55. The Mineralogical Society of America, Washington, pp 113–152

    Google Scholar 

  • Balistrieri LS, Borrok DM, Wanty RB, Ridley WI (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim Cosmochim Acta 72(2):311–328

    Article  CAS  Google Scholar 

  • Bureau International des Poids et Mesures (2011) The international system of units (SI). BIPM Sèvres, Paris

    Google Scholar 

  • Casiot C, Egal M, Elbaz-Poulichet F, Bruneel O, Bancon-Montigny C, Cordier M-A, Gomez E, Aliaume C (2009) Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous River, France); preliminary assessment of impacts on fish (Leuciscus cephalus). Appl Geochem 24(5):787–799

    Article  CAS  Google Scholar 

  • Douthitt C (2008) The evolution and applications of multicollector ICPMS (MC-ICPMS). Anal Bioanal Chem 390(2):437–440

    Article  CAS  Google Scholar 

  • Ettler V, Mihaljevič M, Šebek O, Molek M, Grygar T, Zeman J (2006) Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Příbram, Czech Republic. Environ Pollut 142(3):409–417

    Article  CAS  Google Scholar 

  • Fonyuy EW, Atekwana EA (2008) Effects of acid mine drainage on dissolved inorganic carbon and stable carbon isotopes in receiving streams. Appl Geochem 23:743–764

    Article  CAS  Google Scholar 

  • Frandsen S, Widerlund A, Herbert RB, Öhlander B (2009) Nitrogen effluents from mine sites in northern Sweden: environmental effects and removal of nitrogen in recipients. ICARD 2009: Proceedings from the 8th international conference on acid rock drainage, Skelleftea, Sweden

  • Gammons CH, Duaime TE, Parker SR, Poulson SR, Kennelly P (2010) Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana USA. Chem Geol 269(1–2):100–112

    Article  CAS  Google Scholar 

  • Guo Q, Blowes DW (2009) Biogeochemistry of two types of permeable reactive barriers, organic carbon and iron-bearing organic carbon for mine drainage treatment: column experiments. J Contam Hydrol 107(3–4):128–139

    Article  CAS  Google Scholar 

  • Herbert, RB, Björnström, J (2009). Barrier system for the treatment of nitrogen effluents from the Malberget iron mine. ICARD 2009: Proceedings from the 8th international conference on acid rock drainage, Skelleftea, Sweden

  • Jamieson-Hanes JH, Gibson BD, Lindsay MBJ, Kim Y, Ptacek CJ, Blowes DW (2012) Chromium isotope fractionation during reduction of Cr(VI) under saturated flow conditions. Environ Sci Technol 46:6783–6789

    Article  CAS  Google Scholar 

  • Kimball BE, Mathur R, Dohnalkova AC, Wall AJ, Runkel RL, Brantley SL (2009) Copper isotope fractionation in acid mine drainage. Geochim Cosmochim Acta 73(5):1247–1263

    Article  CAS  Google Scholar 

  • Knöller K, Jeschke C, Simon A, Gast M, Hoth N (2012). Stable isotope fractionation related to technically enhanced bacterial sulphate degradation in lignite mining sediments. Isot Environ Health Stud:1–13

  • Korkisch J, Ahluwalia SS (1967) Cation-exchange behaviour of several elements in hydrochloric acid-organic solvent media. Talanta 14(2):155–170

    Article  CAS  Google Scholar 

  • Peplow D, Edmonds R (2006) Cell pathology and developmental effects of mine waste contamination on invertebrates and fish in the Methow river, Okanogan Country, Washington (USA). Mine Water Environ 25(4):190–203

    Article  CAS  Google Scholar 

  • Quantin C, Jouvin D, Gelabert A, Montarges-Pelletier E, Sivry Y, Zelano I, Pichon R, Garnier J, Benedetti MF (2012). Combining SXRF, EXAFS and isotopic signature to understand the Ni cycle in impacted ultramafic soils. Goldschmidt Conference

  • Rauch JN (2010) Global spatial indexing of the human impact on Al, Cu, Fe, and Zn mobilization. Environ Sci Technol 44(15):5728–5734

    Article  CAS  Google Scholar 

  • Rauch JN, Pacyna JM (2009) Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Globa Biogeochem Cycles 23:GB2001

  • Shiel AE, Lundstrom CC, Johnson TM, Laubach P, Long PE, Williams KH (2013) Changes in 238U/235U associated with reductive immobilization of uranium in groundwater. 23rd Goldschmidt Conference, Florence, Italy

  • Sivry Y, Riotte J, Sonke JE, Audry S, Schäfer J, Viers J, Blanc G, Freydier R, Dupré B (2008) Zn isotopes as tracers of anthropogenic pollution from Zn-ore smelters the Riou Mort–Lot river system. Chem Geol 255(3–4):295–304

    Article  CAS  Google Scholar 

  • Sonke JE, Sivry Y, Viers J, Audry S, Dejonghe L, Andre L, Aggarwal JK, Schaefer J, Blanc G, Dupré B (2007) Historical variations in zinc stable isotope compositions of smelter polluted sediments. Goldschmidt Conference

  • Tröger K, Knöller K, Strauch G (2005) Application of stable isotopes to assess reducing processes in lignite mining dumps. In: Loredo J, Pendas F (eds) Mine water 2005: Mine closure. Oviedo, Spain

  • US EPA (2005). Prevention of acid mine drainage generation from open-pit high walls. Mine Waste Technology Program Activity III

  • Walczyk T (2004) TIMS versus multicollector-ICP-MS: coexistence or struggle for survival? Anal Bioanal Chem 378(2):229–231

    Article  CAS  Google Scholar 

  • Walder AJ, Freedman PA (1992) Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. J Anal At Spectrom 7(3):571–575

    Article  CAS  Google Scholar 

  • Wisskirchen C, Dold B, Friese K, Spangenberg JE, Morgenstern P, Glaesser W (2010) Geochemistry of highly acidic mine water following disposal into a natural lake with carbonate bedrock. Appl Geochem 25(8):1107–1119

    Article  CAS  Google Scholar 

  • Wolkersdorfer C (2006) Water management at abandonded flooded underground mines: fundamentals, tracer tests, modelling, water treatment. Technical University, Mining Academy Freiberg, Freiberg, p 243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romy Matthies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthies, R. Application of heavy stable isotopes in mine water research. Rev Environ Sci Biotechnol 14, 5–8 (2015). https://doi.org/10.1007/s11157-014-9361-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-014-9361-3

Keywords

Navigation