Skip to main content

Advertisement

Log in

Skin manifestations of growth hormone-induced diseases

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The human skin is a well-organized organ bearing different types of cells in a well-structured interference to each other including epidermal and follicular keratinocytes, sebocytes, melanocytes, dermal papilla cells and fibroblasts, endothelial cells, sweat gland cells as well as nerves. Several hormones act on different cell types of the skin, while it is also considered an endocrine organ secreting hormones that act at several sites of the organism. GH receptors are found in almost all cell types forming the skin, while IGF-1 receptors’ expression is restricted to the epidermal keratinocytes. Both Growth Hormone (GH) excess, as in the case of Acromegaly in adults, or Gigantism in growing children, and GH deficiency states lead to skin manifestations. In case of GH excess the main dermatological findings are skin thickening, coarsening of facial features, acrochordons, puffy hands and feet, oily skin and hyperhidrosis, while GH deficiency, on the contrary, is characterized by thin, dry skin and disorder of normal sweating. Moreover, special disorders associated with GH excess may have specific characteristics, as is the case of café-au-lait spots in Neurofibromatosis, or big café-au-lait skin hyperpigmented regions with irregular margins, as is the case in McCune-Albright syndrome. Meticulous examination of the skin may therefore contribute to the final diagnosis in cases of GH-induced disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herrington, J. and C. Carter-Su, Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab, 2001. 12(6): p. 252–7.

  2. Brooks, A.J. and M.J. Waters, The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol, 2010. 6(9): p. 515–25.

  3. Gunawardane K et al. Normal Physiology of Growth Hormone in Adults. In: Endotext LJ, Groot D, et al., editors. . South Dartmouth (MA): MDText.com, Inc.; 2000.

  4. Murray PG, Higham CE, Clayton PE. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-GH axis: the past 60 years. J Endocrinol. 2015;226(2):T123–40.

    Article  CAS  PubMed  Google Scholar 

  5. Davidson MB. Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev. 1987;8(2):115–31.

    Article  CAS  PubMed  Google Scholar 

  6. Moller N et al. Growth hormone and protein metabolism. Clin Nutr. 2009;28(6):597–603.

    Article  CAS  PubMed  Google Scholar 

  7. Zouboulis CC. The human skin as a hormone target and an endocrine gland. Hormones (Athens). 2004;3(1):9–26.

    Article  Google Scholar 

  8. Zouboulis CC. Human skin: an independent peripheral endocrine organ. Horm Res. 2000;54(5–6):230–42.

    CAS  PubMed  Google Scholar 

  9. Zouboulis CC. The skin as an endocrine organ. Dermatoendocrinol. 2009;1(5):250–2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tavakkol A et al. Expression of growth hormone receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin. J Invest Dermatol. 1992;99(3):343–9.

    Article  CAS  PubMed  Google Scholar 

  11. Oakes SR et al. Demonstration and localization of growth hormone receptor in human skin and skin fibroblasts. J Clin Endocrinol Metab. 1992;75(5):1368–73.

    CAS  PubMed  Google Scholar 

  12. Lobie PE et al. Localization of the growth hormone receptor/binding protein in skin. J Endocrinol. 1990;126(3):467–71.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenfeld RG, Dollar LA. Characterization of the somatomedin-C/insulin-like growth factor I (SM-C/IGF-I) receptor on cultured human fibroblast monolayers: regulation of receptor concentrations by SM-C/IGF-I and insulin. J Clin Endocrinol Metab. 1982;55(3):434–40.

    Article  CAS  PubMed  Google Scholar 

  14. Deplewski D, Rosenfield RL. Growth hormone and insulin-like growth factors have different effects on sebaceous cell growth and differentiation. Endocrinology. 1999;140(9):4089–94.

    CAS  PubMed  Google Scholar 

  15. Deplewski D, Rosenfield RL. Role of hormones in pilosebaceous unit development. Endocr Rev. 2000;21(4):363–92.

    Article  CAS  PubMed  Google Scholar 

  16. Su HY et al. Insulin-like growth factor 1 and hair growth. Dermatol Online J. 1999;5(2):1.

    CAS  PubMed  Google Scholar 

  17. Rudman SM et al. The role of IGF-I in human skin and its appendages: morphogen as well as mitogen? J Invest Dermatol. 1997;109(6):770–7.

    Article  CAS  PubMed  Google Scholar 

  18. Edmondson SR et al. Epidermal Homeostasis: The Role of the Growth Hormone and Insulin-Like Growth Factor Systems. Endocr Rev. 2003;24(6):737–64.

    Article  CAS  PubMed  Google Scholar 

  19. Lemmey AB et al. Differential regulation of tissue insulin-like growth factor-binding protein (IGFBP)-3, IGF-I and IGF type 1 receptor mRNA levels, and serum IGF-I and IGFBP concentrations by growth hormone and IGF-I. J Endocrinol. 1997;154(2):319–28.

    Article  CAS  PubMed  Google Scholar 

  20. Lewis, D.A., et al., The IGF-1/IGF-1R signaling axis in the skin: a new role for the dermis in aging-associated skin cancer. Oncogene, 2010. 29(10): p. 1475–85.

  21. Melmed S. Medical progress: Acromegaly. N Engl J Med. 2006;355(24):2558–73.

    Article  CAS  PubMed  Google Scholar 

  22. Eugster EA, Pescovitz OH. Gigantism. J Clin Endocrinol Metab. 1999;84(12):4379–84.

    Article  CAS  PubMed  Google Scholar 

  23. Ben-Shlomo A, Melmed S. Skin manifestations in acromegaly. Clin Dermatol. 2006;24(4):256–9.

    Article  PubMed  Google Scholar 

  24. Centurion SA, Schwartz RA. Cutaneous signs of acromegaly. Int J Dermatol. 2002;41(10):631–4.

    Article  PubMed  Google Scholar 

  25. Matsuoka LY et al. Histochemical characterization of the cutaneous involvement of acromegaly. Arch Intern Med. 1982;142(10):1820–3.

    Article  CAS  PubMed  Google Scholar 

  26. Diven DG, Tanus T, Raimer SS. Cutis Verticis Gyrata. Int J Dermatol. 1991;30(10):710–2.

    Article  CAS  PubMed  Google Scholar 

  27. Resende M et al. Prevalence of dermatologic disorders in 15 patients with acromegaly. An Bras Dermatol. 2012;87(1):166–8.

    Article  PubMed  Google Scholar 

  28. Baris D et al. Acromegaly and cancer risk: a cohort study in Sweden and Denmark. Cancer Causes Control. 2002;13(5):395–400.

    Article  CAS  PubMed  Google Scholar 

  29. Corcuff JB et al. Ocular naevus and melanoma in acromegaly. Clin Endocrinol. 1997;47(1):119–21.

    Article  CAS  Google Scholar 

  30. Torley D, Bellus GA, Munro CS. Genes, growth factors and acanthosis nigricans. Br J Dermatol. 2002;147(6):1096–101.

    Article  CAS  PubMed  Google Scholar 

  31. Demirkesen C. Skin Manifestations of Endocrine Diseases. Turk Patoloji Derg. 2015;31(Suppl 1):145–54.

    PubMed  Google Scholar 

  32. Lolis MS, Bowe WP, Shalita AR. Acne and Systemic Disease. Med Clin N Am. 2009;93(6):1161–81.

    Article  CAS  PubMed  Google Scholar 

  33. Chalmers RJ et al. Acne vulgaris and hidradenitis suppurativa as presenting features of acromegaly. Br Med J (Clin Res Ed). 1983;287(6402):1346–7.

    Article  CAS  Google Scholar 

  34. Borlu M et al. Acromegaly is associated with decreased skin transepidermal water loss and temperature, and increased skin pH and sebum secretion partially reversible after treatment. Growth Hormon IGF Res. 2012;22(2):82–6.

    Article  CAS  Google Scholar 

  35. Kaltsas GA et al. Menstrual irregularity in women with acromegaly. J Clin Endocrinol Metab. 1999;84(8):2731–5.

    Article  CAS  PubMed  Google Scholar 

  36. Henzen C. A gentle giant. Ther Umsch. 2010;67(12):623–7.

    Article  PubMed  Google Scholar 

  37. Sneppen SB et al. Sweat secretion rates in growth hormone disorders. Clin Endocrinol. 2000;53(5):601–8.

    Article  CAS  Google Scholar 

  38. Lange M et al. Skin morphological changes in growth hormone deficiency and acromegaly. Eur J Endocrinol. 2001;145(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  39. Hasan W et al. The sweating apparatus in growth hormone deficiency, following treatment with r-hGH and in acromegaly. Auton Neurosci. 2001;89(1–2):100–9.

    Article  CAS  PubMed  Google Scholar 

  40. Krsek M et al. The relationship between serum levels of insulin-like growth factor-I and its binding proteins and microvascular function in acromegalic patients. Growth Hormon IGF Res. 2002;12(1):54–9.

    Article  CAS  Google Scholar 

  41. Schiavon, F., et al., Morphologic study of microcirculation in acromegaly by capillaroscopy. J Clin Endocrinol Metab, 1999. 84(9): p. 3151–5.

  42. Daughaday WH. Pituitary gigantism. Endocrinol Metab Clin N Am. 1992;21(3):633–47.

    CAS  Google Scholar 

  43. Gelber SJ, Heffez DS, Donohoue PA. Pituitary gigantism caused by growth hormone excess from infancy. J Pediatr. 1992;120(6):931–4.

    Article  CAS  PubMed  Google Scholar 

  44. Zimmerman D et al. Congenital gigantism due to growth hormone-releasing hormone excess and pituitary hyperplasia with adenomatous transformation. J Clin Endocrinol Metab. 1993;76(1):216–22.

    CAS  PubMed  Google Scholar 

  45. Sano T, Asa SL, Kovacs K. Growth hormone-releasing hormone-producing tumors: clinical, biochemical, and morphological manifestations. Endocr Rev. 1988;9(3):357–73.

    Article  CAS  PubMed  Google Scholar 

  46. Doga M et al. Ectopic secretion of growth hormone-releasing hormone (GHRH) in neuroendocrine tumors: relevant clinical aspects. Ann Oncol. 2001;12(Suppl 2):S89–94.

    Article  PubMed  Google Scholar 

  47. Moran A et al. Gigantism due to pituitary mammosomatotroph hyperplasia. N Engl J Med. 1990;323(5):322–7.

    Article  CAS  PubMed  Google Scholar 

  48. Shimon I, Melmed S. Genetic basis of endocrine disease: pituitary tumor pathogenesis. J Clin Endocrinol Metab. 1997;82(6):1675–81.

    CAS  PubMed  Google Scholar 

  49. Feldkamp MM, Gutmann DH, Guha A. Neurofibromatosis type 1: piecing the puzzle together. Can J Neurol Sci. 1998;25(3):181–91.

    Article  CAS  PubMed  Google Scholar 

  50. Ledbetter DH et al. Precise localization of NF1 to 17q11.2 by balanced translocation. Am J Hum Genet. 1989;44(1):20–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Evans DG et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A. 2010;152a(2):327–32.

    Article  CAS  PubMed  Google Scholar 

  52. Shen MH, Harper PS, Upadhyaya M. Molecular genetics of neurofibromatosis type 1 (NF1. J Med Genet. 1996;33(1):2–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duchowny MS, Katz R, Bejar RL. Hypothalamic mass and gigantism in neurofibromatosis: treatment with bromocriptine. Ann Neurol. 1984;15(3):302–4.

    Article  CAS  PubMed  Google Scholar 

  54. Eugster E. In: Endotext LJ, Groot D, et al., editors. Gigantism. South Dartmouth (MA).: MDText.com, Inc; 2000.

    Google Scholar 

  55. Nunley, K.S., et al., Predictive value of cafe au lait macules at initial consultation in the diagnosis of neurofibromatosis type 1. Arch Dermatol, 2009. 145(8): p. 883–7.

  56. Korf BR. Diagnostic outcome in children with multiple cafe au lait spots. Pediatrics. 1992;90(6):924–7.

    CAS  PubMed  Google Scholar 

  57. Landau M, Krafchik BR. The diagnostic value of café-au-lait macules. J Am Acad Dermatol. 1999;40(6):877–90.

    Article  CAS  PubMed  Google Scholar 

  58. Konrad K, Wolff K, Honigsmann H. The giant melanosome: a model of deranged melanosome-morphogenesis. J Ultrastruct Res. 1974;48(1):102–23.

    Article  CAS  PubMed  Google Scholar 

  59. Nakagawa H et al. The nature and origin of the melanin macroglobule. J Invest Dermatol. 1984;83(2):134–9.

    Article  CAS  PubMed  Google Scholar 

  60. Crowe FW. Axillary Freckling as a Diagnostic Aid in Neurofibromatosis. Ann Intern Med. 1964;61(6):1142–3.

    Article  CAS  PubMed  Google Scholar 

  61. Christoforidis A, Maniadaki I, Stanhope R. McCune-Albright syndrome: growth hormone and prolactin hypersecretion. J Pediatr Endocrinol Metab. 2006;19(Suppl 2):623–5.

    CAS  PubMed  Google Scholar 

  62. Weinstein LS et al. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325(24):1688–95.

    Article  CAS  PubMed  Google Scholar 

  63. Lumbroso S, Paris F, Sultan C. McCune-Albright syndrome: molecular genetics. J Pediatr Endocrinol Metab. 2002;15(Suppl 3):875–82.

    CAS  PubMed  Google Scholar 

  64. Dumitrescu CE, Collins MT. McCune-Albright syndrome. Orphanet J Rare Dis. 2008;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Thakker RV et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1. J Clin Endocrinol Metab. 2012;97(9):2990–3011.

    Article  CAS  PubMed  Google Scholar 

  66. Stratakis CA et al. Pituitary macroadenoma in a 5-year-old: an early expression of multiple endocrine neoplasia type 1. J Clin Endocrinol Metab. 2000;85(12):4776–80.

    CAS  PubMed  Google Scholar 

  67. Darling TN et al. Multiple facial angiofibromas and collagenomas in patients with multiple endocrine neoplasia type 1. Arch Dermatol. 1997;133(7):853–7.

    Article  CAS  PubMed  Google Scholar 

  68. Carney JA, Headington JT, Su WP. Cutaneous myxomas. A major component of the complex of myxomas, spotty pigmentation, and endocrine overactivity. Arch Dermatol. 1986;122(7):790–8.

    Article  CAS  PubMed  Google Scholar 

  69. Salpea P et al. Deletions of the PRKAR1A locus at 17q24.2-q24.3 in Carney complex: genotype-phenotype correlations and implications for genetic testing. J Clin Endocrinol Metab. 2014;99(1):E183–8.

    Article  PubMed  Google Scholar 

  70. Groussin L et al. A PRKAR1A mutation associated with primary pigmented nodular adrenocortical disease in 12 kindreds. J Clin Endocrinol Metab. 2006;91(5):1943–9.

    Article  CAS  PubMed  Google Scholar 

  71. Casey M et al. Mutations in the protein kinase A R1alpha regulatory subunit cause familial cardiac myxomas and Carney complex. J Clin Invest. 2000;106(5):R31–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stratakis CA et al. Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Investig. 1996;97(3):699–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Correa R, Salpea P, Stratakis CA. Carney complex: an update. Eur J Endocrinol. 2015;173(4):M85–97. doi:10.1530/EJE-15-0209.

  74. Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86(9):4041–6.

    Article  CAS  PubMed  Google Scholar 

  75. Pack SD et al. Genetic and Histologic Studies of Somatomammotropic Pituitary Tumors in Patients with the “Complex of Spotty Skin Pigmentation, Myxomas, Endocrine Overactivity and Schwannomas” (Carney Complex). J Clin Endocrinol Metabolism. 2000;85(10):3860–5.

    CAS  Google Scholar 

  76. Lodish MB, Trivellin G, Stratakis CA. Pituitary gigantism: update on molecular biology and management. Curr Opin Endocrinol Diabetes Obes. 2016;23(1):72–80. doi:10.1097/MED.0000000000000212.

  77. Martucci F, Trivellin G, Korbonits M. Familial isolated pituitary adenomas: an emerging clinical entity. J Endocrinol Investig. 2012;35(11):1003–14.

    Article  CAS  Google Scholar 

  78. Trivellin G et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med. 2014;371(25):2363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Monson JP, Brooke AM, Akker S. Adult Growth Hormone Deficiency. In: Endotext LJ, Groot D, et al., editors. . South Dartmouth (MA).: MDText.com, Inc.:; 2000.

    Google Scholar 

  80. de Boer H, Blok GJ, Van der Veen EA. Clinical aspects of growth hormone deficiency in adults. Endocr Rev. 1995;16(1):63–86.

    Article  PubMed  Google Scholar 

  81. Melmed S. Idiopathic adult growth hormone deficiency. J Clin Endocrinol Metab. 2013;98(6):2187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Murray PG, Dattani MT, Clayton PE. Controversies in the diagnosis and management of growth hormone deficiency in childhood and adolescence. Arch Dis Child. 2016;101(1):96–100.

    Article  CAS  PubMed  Google Scholar 

  83. Rosenfeld RG, Hwa V. New molecular mechanisms of GH resistance. Eur J Endocrinol. 2004;151(Suppl 1):S11–5.

    Article  CAS  PubMed  Google Scholar 

  84. Wu W et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet. 1998;18(2):147–9.

    Article  CAS  PubMed  Google Scholar 

  85. Cuneo RC et al. The growth hormone deficiency syndrome in adults. Clin Endocrinol. 1992;37(5):387–97.

    Article  CAS  Google Scholar 

  86. Tanriverdi F et al. Investigation of the skin characteristics in patients with severe GH deficiency and the effects of 6 months of GH replacement therapy: a randomized placebo controlled study. Clin Endocrinol. 2006;65(5):579–85.

    Article  CAS  Google Scholar 

  87. Kelestimur F. Sheehan’s syndrome. Pituitary. 2003;6(4):181–8.

    Article  PubMed  Google Scholar 

  88. Borlu M et al. The effects of severe growth hormone deficiency on the skin of patients with Sheehan’s syndrome. J Eur Acad Dermatol Venereol. 2007;21(2):199–204.

    Article  CAS  PubMed  Google Scholar 

  89. Blok GJ et al. Growth hormone substitution in adult growth hormone-deficient men augments androgen effects on the skin. Clin Endocrinol. 1997;47(1):29–36.

    Article  CAS  Google Scholar 

  90. Conte F et al. Evaluation of cutaneous modifications in seventy-seven growth hormone-deficient children. Horm Res. 2000;54(2):92–7.

    CAS  PubMed  Google Scholar 

  91. Main K, Nilsson KO, Skakkebaek NE. Influence of sex and growth hormone deficiency on sweating. Scand J Clin Lab Invest. 1991;51(5):475–80.

    Article  CAS  PubMed  Google Scholar 

  92. Raynal P. Growth hormone and noonan syndrome: update in dysfunctional signaling aspects and in therapy for short stature. Hormonal Studies. 2014;2(1).

  93. Spiliotis BE. Recombinant human growth hormone in the treatment of Turner syndrome. Ther Clin Risk Manag. 2008;4(6):1177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rao E et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet. 1997;16(1):54–63.

    Article  CAS  PubMed  Google Scholar 

  95. Aycan Z, Bas VN. Prader-Willi syndrome and growth hormone deficiency. J Clin Res Pediatr Endocrinol. 2014;6(2):62–7.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lowenstein EJ, Kim KH, Glick SA. Turner’s syndrome in dermatology. J Am Acad Dermatol. 2004;50(5):767–76.

    Article  PubMed  Google Scholar 

  97. Mendez HM, Opitz JM. Noonan syndrome: a review. Am J Med Genet. 1985;21(3):493–506.

    Article  CAS  PubMed  Google Scholar 

  98. Sharland M et al. A clinical study of Noonan syndrome. Arch Dis Child. 1992;67(2):178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bhambhani V, Muenke M. Noonan syndrome. Am Fam Physician. 2014;89(1):37–43.

    PubMed  PubMed Central  Google Scholar 

  100. McCandless SE. Clinical report-health supervision for children with Prader-Willi syndrome. Pediatrics. 2011;127(1):195–204.

    Article  PubMed  Google Scholar 

  101. Bornhausen-Demarch E et al. Cutaneous manifestations of Prader-Willi syndrome. Cutis. 2012;90(3):129–31.

    PubMed  Google Scholar 

  102. Wattendorf DJ, Muenke M. Prader-Willi syndrome. Am Fam Physician. 2005;72(5):827–30.

    PubMed  Google Scholar 

  103. Lurie R, Ben-Amitai D, Laron Z. Laron syndrome (primary growth hormone insensitivity): a unique model to explore the effect of insulin-like growth factor 1 deficiency on human hair. Dermatology. 2004;208(4):314–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Kanaka-Gantenbein.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanaka-Gantenbein, C., Kogia, C., Abdel-Naser, M.B. et al. Skin manifestations of growth hormone-induced diseases. Rev Endocr Metab Disord 17, 259–267 (2016). https://doi.org/10.1007/s11154-016-9378-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9378-8

Keywords

Navigation