Skip to main content

Advertisement

Log in

Molecular mimicry and autoimmune thyroid disease

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Hypothesized 40 years ago, molecular mimicry has been thereafter demonstrated as an extremely common mechanism by which microbes elude immune response and modulate biosynthetic/metabolic pathways of the host. In genetically predisposed persons and under particular conditions, molecular mimicry between microbial and human antigens can turn a defensive immune response into autoimmunity. Such triggering role and its pathogenetic importance have been investigated and demonstrated for many autoimmune diseases. However, this is not the case for autoimmune thyroid disease, which appears relatively neglected by this field of research. Here we review the available literature on the possible role of molecular mimicry as a trigger of autoimmune thyroid disease. Additionally, we present the results of in silico search for amino acid sequence homologies between some microbial proteins and thyroid autoantigens, and the potential pathogenetic relevance of such homologies. Relevance stems from the overlap with known autoepitopes and the occurrence of specific HLA-DR binding motifs. Bioinformatics data published by our group support and explain the triggering role of Borrelia, Yersinia, Clostridium botulinum, Rickettsia prowazekii and Helicobacter pylori. Our new data suggest the potential pathogenic importance of Toxoplasma gondii, some Bifidobacteria and Lactobacilli, Candida albicans, Treponema pallidum and hepatitis C virus in autoimmune thyroid disease, indicating specific molecular targets for future research. Additionally, the consistency between in silico prediction of cross-reactivity and experimental results shows the reliability and usefulness of bioinformatics tools to precisely identify candidate molecules for in vitro and/or in vivo experiments, or at least narrow down their number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates HW. Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidae. Trans Linnean Soc. 1862;23:495–566.

    Article  Google Scholar 

  2. Müller F. Ueber die vortheile der mimicry bei schmetterlingen. Zool Anz. 1878;1:54–5.

    Google Scholar 

  3. Emsley MG. The mimetic significance of Erythrolamprus aesculapii ocellatus Peters from Tobago. Evolution. 1966;20:663–4.

    Article  Google Scholar 

  4. Wickler W. Mimicry in plants and animals. New York: McGraw-Hill; 1968.

    Google Scholar 

  5. Lloyd JE. Aggressive mimicry in photuris: firefly femmes fatales. Science. 1965;149:653–4.

    Article  CAS  PubMed  Google Scholar 

  6. Guarneri F, Guarneri C. Molecular mimicry in cutaneous autoimmune diseases. World J Dermatol. 2013;2:36–43.

    Article  Google Scholar 

  7. Grossman Z, Paul WE. Autoreactivity, dynamic tuning and selectivity. Curr Opin Immunol. 2001;13:687–98.

    Article  CAS  PubMed  Google Scholar 

  8. Brower LP, Pough FH, Meck HR. Theoretical investigations of automimicry, I. Single trial learning. Proc Natl Acad Sci U S A. 1970;66:1059–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sturzl M, Hohenadl C, Zietz C, Castanos-Velez E, Wunderlich A, Ascherl G, Biberfeld P, Monini P, Browning PJ, Ensoli B. Expression of K13/v-FLIP gene of human herpesvirus 8 and apoptosis in Kaposi’s sarcoma spindle cells. J Natl Cancer Inst. 1999;91:1725–33.

    Article  CAS  PubMed  Google Scholar 

  10. Shapiro RF, Wiesner KB, Bryan BL, Utsinger PD, Resnick D, Castles JJ. HLA-B27 and modified bone formation. Lancet. 1976;1:230–1.

    Article  CAS  PubMed  Google Scholar 

  11. Ebringer A. Ankylosing spondylitis, immune-response-genes and molecular mimicry. Lancet. 1979;1:1186.

    Article  CAS  PubMed  Google Scholar 

  12. Adams DD. Molecular mimicry and H-Ir genes. Lancet. 1979;2:754.

    Article  CAS  PubMed  Google Scholar 

  13. Ebringer A. Molecular mimicry and H-Ir genes. Lancet. 1979;2:1143.

    Article  CAS  PubMed  Google Scholar 

  14. Fujinami RS, Oldstone MB. Molecular mimicry as a mechanism for virus-induced autoimmunity. Immunol Res. 1989;8:3–15.

    Article  CAS  PubMed  Google Scholar 

  15. Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today. 1998;19:395.

    Article  CAS  PubMed  Google Scholar 

  16. Anderton SM, Wraith DC. Selection and fine-tuning of the autoimmune T-cell repertoire. Nat Rev Immunol. 2002;2:487–98.

    Article  CAS  PubMed  Google Scholar 

  17. Sospedra M, Martin R. When T cells recognize a pattern, they might cause trouble. Curr Opin Immunol. 2006;18:697–703.

    Article  CAS  PubMed  Google Scholar 

  18. Ryan KR, Patel SD, Stephens LA, Anderton SM. Death, adaptation and regulation: the three pillars of immune tolerance restrict the risk of autoimmune disease caused by molecular mimicry. J Autoimmun. 2007;29:262–71.

    Article  CAS  PubMed  Google Scholar 

  19. Anderton SM, Radu CG, Lowrey PA, Ward ES, Wraith DC. Negative selection during the peripheral immune response to antigen. J Exp Med. 2001;193:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ohashi PS. T-cell signalling and autoimmunity: molecular mechanisms of disease. Nat Rev Immunol. 2002;2:427–38.

    CAS  PubMed  Google Scholar 

  21. Pasare C, Medzhitov R. Toll-like receptors: balancing host resistance with immune tolerance. Curr Opin Immunol. 2003;15:677–82.

    Article  CAS  PubMed  Google Scholar 

  22. Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305.

    Article  CAS  PubMed  Google Scholar 

  23. Anderson CC, Chan WF. Mechanisms and models of peripheral CD4 T cell self-tolerance. Front Biosci. 2004;9:2947–63.

    Article  CAS  PubMed  Google Scholar 

  24. Hildeman DA, Zhu Y, Mitchell TC, Kappler J, Marrack P. Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol. 2002;14:354–9.

    Article  CAS  PubMed  Google Scholar 

  25. Guarneri F, Benvenga S. Environmental factors and genetic background that interact to cause autoimmune thyroid disease. Curr Opin Endocrinol Diabetes Obes. 2007;14:398–409.

    Article  CAS  PubMed  Google Scholar 

  26. Volpé R. A perspective on human autoimmune thyroid disease: is there an abnormality of the target cell which predisposes to the disorder? Autoimmunity. 1992;13:3–9.

    Article  PubMed  Google Scholar 

  27. Toivanen P, Toivanen A. Does Yersinia induce autoimmunity? Int Arch Allergy Immunol. 1994;104:107–11.

    Article  CAS  PubMed  Google Scholar 

  28. Tomer Y, Davies TF. Infections and autoimmune endocrine disease. Bailliere Clin Endocrinol Metab. 1995;9:47–70.

    Article  CAS  Google Scholar 

  29. Martin A, Barbesino G, Davies TF. T-cell receptors and autoimmune thyroid disease–signposts for T-cell-antigen driven diseases. Int Rev Immunol. 1999;18:111–40.

    Article  CAS  PubMed  Google Scholar 

  30. Rao VP, Kajon AE, Spindler KR, Carayanniotis G. Involvement of epitope mimicry in potentiation but not initiation of autoimmune disease. J Immunol. 1999;162:5888–93.

    CAS  PubMed  Google Scholar 

  31. Carayanniotis G, Kong YC. Pathogenic thyroglobulin peptides as model antigens: insights on the induction and maintenance of autoimmune thyroiditis. Int Rev Immunol. 2000;19:557–72.

    Article  CAS  PubMed  Google Scholar 

  32. Chen CR, Tanaka K, Chazenbalk GD, McLachlan SM, Rapoport B. A full biological response to autoantibodies in Graves’ disease requires a disulfide-bonded loop in the thyrotropin receptor N terminus homologous to a laminin epidermal growth factor-like domain. J Biol Chem. 2001;276:14767–72.

    Article  CAS  PubMed  Google Scholar 

  33. Chen F, Day SL, Metcalfe RA, Sethi G, Kapembwa MS, Brook MG, Churchill D, de Ruiter A, Robinson S, Lacey CJ, Weetman AP. Characteristics of autoimmune thyroid disease occurring as a late complication of immune reconstitution in patients with advanced human immunodeficiency virus (HIV) disease. Medicine (Baltimore). 2005;84:98–106.

    Article  CAS  Google Scholar 

  34. Bach JF. Infections and autoimmune diseases. J Autoimmun. 2005;25(Suppl):74–80.

    Article  CAS  PubMed  Google Scholar 

  35. Vaccaro M, Guarneri F, Borgia F, Cannavò SP, Benvenga S. Association of lichen sclerosus and autoimmune thyroiditis: possible role of Borrelia burgdorferi? Thyroid. 2002;12:1147–8.

    Article  PubMed  Google Scholar 

  36. Benvenga S, Guarneri F, Vaccaro M, Santarpia L, Trimarchi F. Homologies between proteins of Borrelia burgdorferi and thyroid autoantigens. Thyroid. 2004;14:964–6.

    Article  CAS  PubMed  Google Scholar 

  37. Benvenga S, Santarpia L, Trimarchi F, Guarneri F. Human thyroid autoantigens and proteins of Yersinia and Borrelia share amino acid sequence homology that includes binding motifs to HLA-DR molecules and T-cell receptor. Thyroid. 2006;16:225–36.

    Article  CAS  PubMed  Google Scholar 

  38. Guarneri F, Carlotta D, Saraceno G, Trimarchi F, Benvenga S. Bioinformatics support the possible triggering of autoimmune thyroid disease by Yersinia enterocolitica outer membrane proteins homologous to the human thyrotropin receptor. Thyroid. 2011;21:1283–4.

    Article  PubMed  Google Scholar 

  39. Gregoric E, Gregoric JA, Guarneri F, Benvenga S. Injections of Clostridium botulinum neurotoxin A may cause thyroid complications in predisposed persons based on molecular mimicry with thyroid autoantigens. Endocrine. 2011;39:41–7.

    Article  CAS  PubMed  Google Scholar 

  40. Marangou A, Guarneri F, Benvenga S. Graves’ disease precipitated by rickettsial infection. Endocrine. 2015;50:828–9.

    Article  CAS  PubMed  Google Scholar 

  41. Guarneri F, Guarneri B. Bioinformatic analysis of HLA-linked genetic susceptibility to immunoallergic disease: the MotiFinder software. Ann Ital Dermatol Allergol. 2010;64:69–75.

    Google Scholar 

  42. Paparone PW. Hypothyroidism with concurrent Lyme disease. J Am Osteopath Assoc. 1995;95:435–7.

    CAS  PubMed  Google Scholar 

  43. Völzke H, Werner A, Guertler L, Robinson D, Wallaschofski H, John U. Putative association between anti-Borrelia IgG and autoimmune thyroid disease? Thyroid. 2005;15:1273–7.

    Article  PubMed  Google Scholar 

  44. Bech K, Larsen JH, Hansen JM, Nerup J. Yersinia enterocolitica infection and thyroid disorders. Lancet. 1974;2:951–2.

    Article  CAS  PubMed  Google Scholar 

  45. Lidman K, Eriksson U, Fagraeus A, Norberg R. Antibodies against thyroid cells in Yersinia enterocolitica infection. Lancet. 1974;2:1449.

    Article  CAS  PubMed  Google Scholar 

  46. Von Bonsdorff M, Friman C. Yersinia enterocolitica infection and thyroid disorders. Lancet. 1974;2:1565–6.

    Article  Google Scholar 

  47. Arscott P, Rosen ED, Koenig RJ, Kaplan MM, Ellis T, Thompson N, Baker Jr JR. Immunoreactivity to Yersinia enterocolitica antigens in patients with autoimmune thyroid disease. J Clin Endocrinol Metab. 1992;75:295–300.

    CAS  PubMed  Google Scholar 

  48. Wenzel BE, Peters A, Zubaschev I. Bacterial virulence antigens and the pathogenesis of autoimmune thyroid disease (AITD). Exp Clin Endocrinol Diabetes. 1996;104(Suppl 4):75–8.

    Article  CAS  PubMed  Google Scholar 

  49. Chatzipanagiotou S, Legakis JN, Boufidou F, Petroyianni V, Nicolaou C. Prevalence of Yersinia plasmid-encoded outer protein (Yop) class-specific antibodies in patients with Hashimoto’s thyroiditis. Clin Microbiol Infect. 2001;7:138–43.

    Article  CAS  PubMed  Google Scholar 

  50. Wang Z, Zhang Q, Lu J, Jiang F, Zhang H, Gao L, Zhao J. Identification of outer membrane porin f protein of Yersinia enterocolitica recognized by antithyrotropin receptor antibodies in Graves’ disease and determination of its epitope using mass spectrometry and bioinformatics tools. J Clin Endocrinol Metab. 2010;95:4012–20.

    Article  CAS  PubMed  Google Scholar 

  51. Hargreaves CE, Grasso M, Hampe CS, Stenkova A, Atkinson S, Joshua GW, Wren BW, Buckle AM, Dunn-Walters D, Banga JP. Yersinia enterocolitica provides the link between thyroid-stimulating antibodies and their germline counterparts in Graves’ disease. J Immunol. 2013;190:5373–81.

    Article  CAS  PubMed  Google Scholar 

  52. Giménez-Barcons M, Colobran R, Gómez-Pau A, Marín-Sánchez A, Casteràs A, Obiols G, Abella R, Fernández-Doblas J, Tonacchera M, Lucas-Martín A, Pujol-Borrell R. Graves’ disease TSHR-stimulating antibodies (TSAbs) induce the activation of immature thymocytes: a clue to the riddle of TSAbs generation? J Immunol. 2015;194:4199–206.

    Article  PubMed  Google Scholar 

  53. Hansen PS, Wenzel BE, Brix TH, Hegedüs L. Yersinia enterocolitica infection does not confer an increased risk of thyroid antibodies: evidence from a Danish twin study. Clin Exp Immunol. 2006;146:32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Effraimidis G, Tijssen JG, Strieder TG, Wiersinga WM. No causal relationship between Yersinia enterocolitica infection and autoimmune thyroid disease: evidence from a prospective study. Clin Exp Immunol. 2011;165:38–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vita R, Lapa D, Vita G, Trimarchi F, Benvenga S. A patient with stress-related onset and exacerbations of Graves’ disease. Nat Clin Pract Endocrinol Metab. 2009;5:55–61.

    Article  CAS  PubMed  Google Scholar 

  56. Vita R, Lapa D, Trimarchi F, Benvenga S. Stress triggers the onset and the recurrences of hyperthyroidism in patients with Graves’ disease. Endocrine. 2015;48:254–63.

    Article  CAS  PubMed  Google Scholar 

  57. de Luis DA, Varela C, de La Calle H, Cantón R, de Argila CM, San Roman AL, Boixeda D. Helicobacter pylori infection is markedly increased in patients with autoimmune atrophic thyroiditis. J Clin Gastroenterol. 1998;26:259–63.

    Article  PubMed  Google Scholar 

  58. Figura N, Di Cairano G, Lorè F, Guarino E, Gragnoli A, Cataldo D, Giannace R, Vaira D, Bianciardi L, Kristodhullu S, Lenzi C, Torricelli V, Orlandini G, Gennari C. The infection by Helicobacter pylori strains expressing CagA is highly prevalent in women with autoimmune thyroid disorders. J Physiol Pharmacol. 1999;50:817–26.

    CAS  PubMed  Google Scholar 

  59. Franceschi F, Satta MA, Mentella MC, Penland R, Candelli M, Grillo RL, Leo D, Fini L, Nista EC, Cazzato IA, Lupascu A, Pola P, Pontecorvi A, Gasbarrini G, Genta RM, Gasbarrini A. Helicobacter pylori infection in patients with Hashimoto’s thyroiditis. Helicobacter. 2004;9:369.

    Article  PubMed  Google Scholar 

  60. Bertalot G, Montresor G, Tampieri M, Spasiano A, Pedroni M, Milanesi B, Favret M, Manca N, Negrini R. Decrease in thyroid autoantibodies after eradication of Helicobacter pylori infection. Clin Endocrinol. 2004;61:650–2.

    Article  Google Scholar 

  61. Tomasi PA, Dore MP, Fanciulli G, Sanciu F, Realdi G, Delitala G. Is there anything to the reported association between Helicobacter pylori infection and autoimmune thyroiditis? Dig Dis Sci. 2005;50:385–8.

    Article  PubMed  Google Scholar 

  62. Sterzl I, Hrda P, Potuznikova B, Matucha P, Hana V, Zamrazil V. Autoimmune thyroiditis and Helicobacter pylori-is there a connection? Neuro Endocrinol Lett. 2006;27(Suppl 1):41–5.

    CAS  PubMed  Google Scholar 

  63. Sterzl I, Hrdá P, Matucha P, Cerovská J, Zamrazil V. Anti-Helicobacter pylori, anti-thyroid peroxidase, anti-thyroglobulin and anti-gastric parietal cells antibodies in Czech population. Physiol Res. 2008;57(Suppl 1):S135–41.

    CAS  PubMed  Google Scholar 

  64. Bassi V, Santinelli C, Iengo A, Romano C. Identification of a correlation between Helicobacter pylori infection and Graves’ disease. Helicobacter. 2010;15:558–62.

    Article  PubMed  Google Scholar 

  65. Bassi V, Marino G, Iengo A, Fattoruso O, Santinelli C. Autoimmune thyroid disease and Helicobacter pylori: the correlation is present only in Graves’ disease. World J Gastroenterol. 2012;18:1093–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Soveid M, Hosseini Asl K, Omrani GR. Infection by Cag A positive strains of Helicobacter pylori is associated with autoimmune thyroid disease in Iranian patients. Iran J Immunol. 2012;9:48–52.

    PubMed  Google Scholar 

  67. Shi WJ, Liu W, Zhou XY, Ye F, Zhang GX. Associations of Helicobacter pylori infection and cytotoxin-associated gene A status with autoimmune thyroid disease: a meta-analysis. Thyroid. 2013;23:1294–300.

    Article  CAS  PubMed  Google Scholar 

  68. Aghili R, Jafarzadeh F, Ghorbani R, Khamseh ME, Salami MA, Malek M. The association of Helicobacter pylori infection with Hashimoto’s thyroiditis. Acta Med Iran. 2013;51:293–6.

    PubMed  Google Scholar 

  69. Arslan MS, Ekiz F, Deveci M, Sahin M, Topaloglu O, Karbek B, Tutal E, Ginis Z, Cakal E, Ozbek M, Yuksel O, Delibasi T. The relationship between cytotoxin-associated gene A positive Helicobacter pylori infection and autoimmune thyroid disease. Endocr Res. 2015;40:211–4.

    Article  PubMed  Google Scholar 

  70. El-Eshmawy MM, El-Hawary AK, Abdel Gawad SS, El-Baiomy AA. Helicobacter pylori infection might be responsible for the interconnection between type 1 diabetes and autoimmune thyroiditis. Diabetol Metab Syndr. 2011;3:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zekry OA, Abd Elwahid HA. The association between Helicobacter pylori infection, type 1 diabetes mellitus, and autoimmune thyroiditis. J Egypt Public Health Assoc. 2013;88:143–7.

    Article  PubMed  Google Scholar 

  72. Guarneri F, Alessi A, Trimarchi F, Benvenga S. Helicobacter pylori proteins and thyroid autoantigens share amino acid sequence homology that includes motifs of recognition for HLA molecules and T-cell receptors. 77th Annual meeting of the American Thyroid Association, Phoenix, AZ, USA, October 11–16, 2006. Thyroid. 2006;16:860–1 (Abstract).

    Google Scholar 

  73. Larizza D, Calcaterra V, Martinetti M, Negrini R, De Silvestri A, Cisternino M, Iannone AM, Solcia E. Helicobacter pylori infection and autoimmune thyroid disease in young patients: the disadvantage of carrying the human leukocyte antigen-DRB1*0301 allele. J Clin Endocrinol Metab. 2006;91:176–9.

    Article  CAS  PubMed  Google Scholar 

  74. Tozzoli R, Barzilai O, Ram M, Villalta D, Bizzaro N, Sherer Y, Shoenfeld Y. Infections and autoimmune thyroid diseases: parallel detection of antibodies against pathogens with proteomic technology. Autoimmun Rev. 2008;8:112–5.

    Article  CAS  PubMed  Google Scholar 

  75. Shapira Y, Agmon-Levin N, Selmi C, Petríková J, Barzilai O, Ram M, Bizzaro N, Valentini G, Matucci-Cerinic M, Anaya JM, Katz BS, Shoenfeld Y. Prevalence of anti-Toxoplasma antibodies in patients with autoimmune diseases. J Autoimmun. 2012;39:112–6.

    Article  CAS  PubMed  Google Scholar 

  76. Wasserman EE, Nelson K, Rose NR, Rhode C, Pillion JP, Seaberg E, Talor MV, Burek L, Eaton W, Duggan A, Yolken RH. Infection and thyroid autoimmunity: a seroepidemiologic study of TPOaAb. Autoimmunity. 2009;42:439–46.

    Article  PubMed  Google Scholar 

  77. Kaňková Š, Procházková L, Flegr J, Calda P, Springer D, Potluková E. Effects of latent toxoplasmosis on autoimmune thyroid diseases in pregnancy. PLoS One. 2014;9:e110878.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kiseleva EP, Mikhailopulo KI, Sviridov OV, Novik GI, Knirel YA, Szwajcer DE. The role of components of Bifidobacterium and Lactobacillus in pathogenesis and serologic diagnosis of autoimmune thyroid disease. Benefic Microbes. 2011;2:139–54.

    Article  CAS  Google Scholar 

  79. Felis GE, Dellaglio F, Torriani S. Taxonomy of probiotic microrganisms. In: Charalampopoulos D, Rastall RA, editors. Prebiotics and probiotics science and technology. New York: Springer; 2009. p. 591–637.

    Chapter  Google Scholar 

  80. Vojdani A, Rahimian P, Kalhor H, Mordechai E. Immunological cross reactivity between Candida albicans and human tissue. J Clin Lab Immunol. 1996;48:1–15.

    CAS  PubMed  Google Scholar 

  81. Khoury EL, Pereira L, Greenspan FS. Induction of HLA-DR expression on thyroid follicular cells by cytomegalovirus infection in vitro. Evidence for a dual mechanism of induction. Am J Pathol. 1991;138:1209–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Thomas D, Karachaliou F, Kallergi K, Vlachopapadopoulou E, Antonaki G, Chatzimarkou F, Fotinou A, Kaldrymides P, Michalacos S. Herpes virus antibodies seroprevalence in children with autoimmune thyroid disease. Endocrine. 2008;33:171–5.

    Article  CAS  PubMed  Google Scholar 

  83. Jadali Z, Alavian SM. Autoimmune diseases co-existing with hepatitis C virus infection. Iran J Allergy Asthma Immunol. 2010;9:191–206.

    PubMed  Google Scholar 

  84. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14:174–80.

    Article  CAS  PubMed  Google Scholar 

  85. Fallahi P, Ferrari SM, Ruffilli I, Elia G, Giuggioli D, Colaci M, Ferri C, Antonelli A. Incidence of thyroid disorders in mixed cryoglobulinemia: results from a longitudinal follow-up. Autoimmun Rev. 2016. doi:10.1016/j.autrev.2016.03.012.

    Google Scholar 

  86. Ferri S, Muratori L, Lenzi M, Granito A, Bianchi FB, Vergani D. HCV and autoimmunity. Curr Pharm Des. 2008;14:1678–85.

    Article  CAS  PubMed  Google Scholar 

  87. Muratori L, Bogdanos DP, Muratori P, Lenzi M, Granito A, Ma Y, Mieli-Vergani G, Bianchi FB, Vergani D. Susceptibility to thyroid disorders in hepatitis C. Clin Gastroenterol Hepatol. 2005;3:595–603.

    Article  CAS  PubMed  Google Scholar 

  88. Tomer Y. Hepatitis C and interferon induced thyroiditis. J Autoimmun. 2010;34:J322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Menconi F, Hasham A, Tomer Y. Environmental triggers of thyroiditis: hepatitis C and interferon-α. J Endocrinol Investig. 2011;34:78–84.

    Article  CAS  Google Scholar 

  90. Martocchia A, Falaschi P. Amino acid sequence homologies between HCV polyprotein and thyroid antigens. Intern Emerg Med. 2007;2:65–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Akeno N, Blackard JT, Tomer Y. HCV E2 protein binds directly to thyroid cells and induces IL-8 production: a new mechanism for HCV induced thyroid autoimmunity. J Autoimmun. 2008;31:339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Guarneri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benvenga, S., Guarneri, F. Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord 17, 485–498 (2016). https://doi.org/10.1007/s11154-016-9363-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9363-2

Keywords

Navigation