Skip to main content
Log in

Lipids and obesity: Also a matter of taste?

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Obesity is undoubtedly one of the major public health challenges worldwide because of its rapid progression and deleterious effects of associated diseases. The easier access to tasty and energy-dense foods is thought to greatly contribute to this epidemic. Studies also report that obese subjects and animals (rats and mice) preferentially consume foods rich in fat when they can choose. The origin of this eating behavior remains elusive. Over the last decade, the existence of a taste of fat, besides textural and olfactory cues, was supported by a growing number of studies. The existence of a sixth taste modality devoted to the detection/perception of dietary lipids might offer additive information on the quality of food. While the sense of taste is recognized to be a driving-force guiding food choice, interest in the putative relationships between lipids, gustation and obesity is only now emerging. This mini-review will attempt to summarize our current knowledge on this new field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFC:

Alternative ascending force-choice

Amy:

Amygdala

CT:

Chorda tympani nerve

DA:

Dopamine

D2R:

Dopamine receptor

DIO:

Diet-induced obesity

FFA:

Free fatty acids

FFAR4:

Free fatty acid receptor 4

fMRI:

Functional MRI, magnetic resonance imaging

Fop:

Frontal operculum

GL:

Glossopharyngeal nerve

GLP-1:

Glucagon-like peptide 1

GPCR:

G protein-coupled receptor

HFD:

High fat diet

Hippo:

Hippocampus

LCFA:

Long-chain fatty acid

LPS:

Lipopolysaccharides

MOR:

μ-opoid receptor

NAc:

Nucleus accumbens

NTS:

Nucleus of tractus solitarius

ObRb:

Leptin receptor

OFC:

Orbito-frontal cortex

PET:

Positron emission tomography

PGC:

Primary gustatory cortex

RYGB:

Roux-en-Y gastric bypass

SGC:

Secondary gustatory cortex

TG:

Triglycerides

TLR:

Toll-like receptors

TBC:

Taste bud cells

TRC:

Taste-receptor cells

VTA:

Ventral tegmental area.

References

  1. Teaford MF, Ungar PS. Diet and the evolution of the earliest human ancestors. Proc Natl Acad Sci U S A. 2000;97:13506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drewnowski A, Brunzell JD, Sande K, Iverius PH, Greenwood MR. Sweet tooth reconsidered: taste responsiveness in human obesity. Physiol Behav. 1985;35:617–22.

    Article  CAS  PubMed  Google Scholar 

  3. Mela DJ, Sacchetti DA. Sensory preferences for fats: relationships with diet and body composition. Am J Clin Nutr. 1991;53:908–15.

    CAS  PubMed  Google Scholar 

  4. White MA, Whisenhunt BL, Williamson DA, Greenway FL, Netemeyer RG. Development and validation of the food-craving inventory. Obes Res. 2002;10:107–14.

    Article  PubMed  Google Scholar 

  5. Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, Besnard P. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest. 2005;115:3177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, le Coutre J, Ninomiya Y, Damak S. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci. 2010;30:8376–82.

    Article  CAS  PubMed  Google Scholar 

  7. Simons PJ, Kummer JA, Luiken JJ, Boon L. Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae. Acta Histochem. 2011;113:839–43.

    Article  CAS  PubMed  Google Scholar 

  8. Galindo MM, Voigt N, Stein J, van Lengerich J, Raguse JD, Hofmann T, Meyerhof W, Behrens M. G protein-coupled receptors in human fat taste perception. Chem Senses. 2012;37:123–39.

    Article  CAS  PubMed  Google Scholar 

  9. Pepino MY, Love-Gregory L, Klein S, Abumrad NA. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid Res. 2012;53:561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Besnard P, Passilly-Degrace P, Khan NA. Taste of fat: a sixth taste modality? Physiol Rev. 2016;96:151–76.

    Article  PubMed  Google Scholar 

  11. Heinze JM, Preissl H, Fritsche A, Frank S. Controversies in fat perception. Physiol Behav. 2015;152:479–93.

    Article  CAS  PubMed  Google Scholar 

  12. Power ML, Schulkin J. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite. 2008;50:194–206.

    Article  PubMed  Google Scholar 

  13. Rolls ET. Taste, olfactory, and food reward value processing in the brain. Prog Neurobiol. 2015;127-128:64–90.

    Article  PubMed  Google Scholar 

  14. Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev. 1996;20:1–25.

    Article  CAS  PubMed  Google Scholar 

  15. Berridge KC, Kringelbach ML. Neuroscience of affect: brain mechanisms of pleasure and displeasure. Curr Opin Neurobiol. 2013;23:294–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li JX, Yoshida T, Monk KJ, Katz DB. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics. J Neurosci. 2013;33:9462–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis JF, Choi DL, Benoit SC. Insulin, leptin and reward. Trends Endocrinol Metab. 2010;21:68–74.

    Article  CAS  PubMed  Google Scholar 

  18. Berthoud HR. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol. 2011;21:888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mattes RD. Accumulating evidence supports a taste component for free fatty acids in humans. Physiol Behav. 2011;104:624–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takeda M, Imaizumi M, Fushiki T. Preference for vegetable oils in the two-bottle choice test in mice. Life Sci. 2000;67:197–204.

    Article  CAS  PubMed  Google Scholar 

  21. Fukuwatari T, Shibata K, Iguchi K, Saeki T, Iwata A, Tani K, Sugimoto E, Fushiki T. Role of gustation in the recognition of oleate and triolein in anosmic rats. Physiol Behav. 2003;78:579–83.

    Article  CAS  PubMed  Google Scholar 

  22. Chale-Rush A, Burgess JR, Mattes RD. Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chem Senses. 2007;32:423–31.

    Article  CAS  PubMed  Google Scholar 

  23. Kawai T, Fushiki T. Importance of lipolysis in oral cavity for orosensory detection of fat. Am J Phys Regul Integr Comp Phys. 2003;285:R447–54.

    CAS  Google Scholar 

  24. Fukuwatari T, Kawada T, Tsuruta M, Hiraoka T, Iwanaga T, Sugimoto E, Fushiki T. Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats. FEBS Lett. 1997;414:461–4.

    Article  CAS  PubMed  Google Scholar 

  25. Chen CS, Bench EM, Allerton TD, Schreiber AL, Arceneaux 3rd KP, Primeaux SD. Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Phys Regul Integr Comp Phys. 2013;305:R1346–55.

    CAS  Google Scholar 

  26. Love-Gregory L, Abumrad NA. CD36 genetics and the metabolic complications of obesity. Curr Op Clin Nutr Metab Care. 2011;14:527–34.

    Article  CAS  Google Scholar 

  27. Sclafani A, Zukerman S, Ackroff K. GPR40 and GPR120 fatty acid sensors are critical for postoral but not oral mediation of fat preferences in the mouse. Am J Phys Regul Integr Comp Phys. 2013;305:R1490–7.

    CAS  Google Scholar 

  28. Ancel D, Bernard A, Subramaniam S, Hirasawa A, Tsujimoto G, Hashimoto T, Passilly-Degrace P, Khan NA, Besnard P. The oral lipid sensor GPR120 is not indispensable for the orosensory detection of dietary lipids in the mouse. J Lipid Res. 2016;56:369–78.

    Article  CAS  Google Scholar 

  29. Godinot N, Yasumatsu K, Barcos ME, Pineau N, Ledda M, Viton F, Ninomiya Y, le Coutre J, Damak S. Activation of tongue-expressed GPR40 and GPR120 by non caloric agonists is not sufficient to drive preference in mice. Neurosci. 2013;250:20–30.

    Article  CAS  Google Scholar 

  30. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11:90–4.

    Article  CAS  PubMed  Google Scholar 

  31. Martin C, Passilly-Degrace P, Chevrot M, Ancel D, Sparks SM, Drucker DJ, Besnard P. Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity. J Lipid Res. 2012;53:2256–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin B, Dotson CD, Shin YK, Ji S, Drucker DJ, Maudsley S, Munger SD. Modulation of taste sensitivity by GLP-1 signaling in taste buds. Ann N Y Acad Sci. 2009;1170:98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaillard D, Laugerette F, Darcel N, El-Yassimi A, Passilly-Degrace P, Hichami A, Khan NA, Montmayeur JP, Besnard P. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J. 2008;22:1458–68.

    Article  CAS  PubMed  Google Scholar 

  34. El-Yassimi A, Hichami A, Besnard P, Khan NA. Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem. 2008;283:12949–59.

    Article  CAS  PubMed  Google Scholar 

  35. Ozdener MH, Subramaniam S, Sundaresan S, Sery O, Hashimoto T, Asakawa Y, Besnard P, Abumrad NA, Khan NA. CD36- and GPR120-mediated Ca(2)(+) signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology. 2014;146:995–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dramane G, Abdoul-Azize S, Hichami A, Vogtle T, Akpona S, Chouabe C, Sadou H, Nieswandt B, Besnard P, Khan NA. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice. J Clin Invest. 2012;122:2267–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sclafani A, Zukerman S, Glendinning JI, Margolskee RF. Fat and carbohydrate preferences in mice: the contribution of alpha-gustducin and Trpm5 taste-signaling proteins. Am J Phys Regul Integr Comp Phys. 2007;293:R1504–13.

    CAS  Google Scholar 

  38. Sclafani A, Ackroff K. Maltodextrin and fat preference deficits in “taste-blind” P2X2/P2X3 knockout mice. Chem Senses. 2014;39:507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Araujo IE, Rolls ET. Representation in the human brain of food texture and oral fat. J Neurosci. 2004;24:3086–93.

    Article  PubMed  CAS  Google Scholar 

  40. Rolls ET. Mechanisms for sensing fat in food in the mouth: presented at the symposium “the taste for fat: new discoveries on the role of fat in sensory perception, metabolism, sensory pleasure and beyond” held at the Institute of Food Technologists 2011 annual meeting, New Orleans, LA, USA., June 12, 2011. J Food Sci. 2012;77:S140–2.

    Article  CAS  PubMed  Google Scholar 

  41. Verhagen JV, Rolls ET, Kadohisa M. Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J Neurophysiol. 2003;90:1514–25.

    Article  PubMed  Google Scholar 

  42. Eldeghaidy S, Marciani L, McGlone F, Hollowood T, Hort J, Head K, Taylor AJ, Busch J, Spiller RC, Gowland PA, Francis ST. The cortical response to the oral perception of fat emulsions and the effect of taster status. J Neurophysiol. 2011;105:2572–81.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shin AC, Berthoud HR. Food reward functions as affected by obesity and bariatric surgery. Int J Obes. 2011;35(Suppl 3):S40–4.

    Article  Google Scholar 

  44. Chevrot M, Passilly-Degrace P, Ancel D, Bernard A, Enderli G, Gomes M, Robin I, Issanchou S, Verges B, Nicklaus S, Besnard P. Obesity interferes with the orosensory detection of long-chain fatty acids in humans. Am J Clin Nutr. 2014;99:975–83.

    Article  CAS  PubMed  Google Scholar 

  45. Keller KL, Liang LC, Sakimura J, May D, van Belle C, Breen C, Driggin E, Tepper BJ, Lanzano PC, Deng L, Chung WK. Common variants in the CD36 gene are associated with oral fat perception, fat preferences, and obesity in African Americans. Obesity. 2012;20:1066–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mattes RD. Brief oral stimulation, but especially oral fat exposure, elevates serum triglycerides in humans. Am J Physiol Gastrointest Liver Physiol. 2009;296:G365–71.

    Article  CAS  PubMed  Google Scholar 

  47. Martin C, Passilly-Degrace P, Gaillard D, Merlin JF, Chevrot M, Besnard P. The lipid-sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: impact on spontaneous fat preference. PLoS One. 2011;6:e24014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rolls BJ, Rowe EA, Rolls ET, Kingston B, Megson A, Gunary R. Variety in a meal enhances food intake in man. Physiol Behav. 1981;26:215–21.

    Article  CAS  PubMed  Google Scholar 

  49. Cai H, Cong WN, Daimon CM, Wang R, Tschop MH, Sevigny J, Martin B, Maudsley S. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice. PLoS One. 2013;8:e76553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. DiPatrizio NV, Joslin A, Jung KM, Piomelli D. Endocannabinoid signaling in the gut mediates preference for dietary unsaturated fats. FASEB J. 2013;27:2513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shin AC, Townsend RL, Patterson LM, Berthoud HR. “liking” and “wanting” of sweet and oily food stimuli as affected by high-fat diet-induced obesity, weight loss, leptin, and genetic predisposition. Am J Phys Regul Integr Comp Phys. 2011;301:R1267–80.

    CAS  Google Scholar 

  52. Running CA, Craig BA, Mattes RD. Oleogustus: the unique taste of fat. Chem Senses. 2015;40:507–16.

    Article  PubMed  Google Scholar 

  53. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol. 2008;117:924–35.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bray GA, Popkin BM. Dietary fat intake does affect obesity! Am J Clin Nutr. 1998;68:1157–73.

    CAS  PubMed  Google Scholar 

  55. Chevrot M, Bernard A, Ancel D, Buttet M, Martin C, Abdoul-Azize S, Merlin JF, Poirier H, Niot I, Khan NA, Passilly-Degrace P, Besnard P. Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36. J Lipid Res. 2013;54:2485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Brit J Nutr. 2010;104:145–52.

    Article  CAS  PubMed  Google Scholar 

  57. Stewart JE, Feinle-Bisset C, Keast RS. Fatty acid detection during food consumption and digestion: associations with ingestive behavior and obesity. Prog Lipid Res. 2011;50:225–33.

    Article  CAS  PubMed  Google Scholar 

  58. Stewart JE, Seimon RV, Otto B, Keast RS, Clifton PM, Feinle-Bisset C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr. 2011;93:703–11.

    Article  CAS  PubMed  Google Scholar 

  59. Stewart JE, Keast RS. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int J Obes. 2012;36:834–42.

    Article  CAS  Google Scholar 

  60. Tucker RM, Edlinger C, Craig BA, Mattes RD. Associations between BMI and fat taste sensitivity in humans. Chem Senses. 2014;39:349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tucker RM, Nuessle TM, Garneau NL, Smutzer G, Mattes RD. No difference in perceived intensity of linoleic acid in the oral cavity between obese and Nonobese individuals. Chem Senses. 2015;40:557–63.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tucker RM, Mattes RD. Influences of repeated testing on nonesterified fatty acid taste. Chem Senses. 2013;38:325–32.

    Article  CAS  PubMed  Google Scholar 

  63. Mattes RD. Oral fat exposure alters postprandial lipid metabolism in humans. Am J Clin Nutr. 1996;63:911–7.

    CAS  PubMed  Google Scholar 

  64. Chavez-Jauregui RN, Mattes RD, Parks EJ. Dynamics of fat absorption and effect of sham feeding on postprandial lipema. Gastroenterology. 2010;139:1538–48.

    Article  PubMed  Google Scholar 

  65. Cansell C, Castel J, Denis RG, Rouch C, Delbes AS, Martinez S, Mestivier D, Finan B, Maldonado-Aviles JG, Rijnsburger M, Tschop MH, DiLeone RJ, Eckel RH, la Fleur SE, Magnan C, Hnasko TS, Luquet S. Dietary triglycerides act on mesolimbic structures to regulate the rewarding and motivational aspects of feeding. Mol Psychiatry. 2014;19:1095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Duffy VB. Variation in oral sensation: implications for diet and health. Curr Opin Gastroenterol. 2007;23:171–7.

    Article  CAS  PubMed  Google Scholar 

  67. Proserpio C, Laureati M, Bertoli S, Battezzati A, Pagliarini E. Determinants of obesity in Italian adults: the role of taste sensitivity, food liking, and food Neophobia. Chem Senses. 2016;41:169–76.

    PubMed  Google Scholar 

  68. Miller Jr IJ, Reedy Jr FE. Variations in human taste bud density and taste intensity perception. Physiol Behav. 1990;47:1213–121.

    Article  PubMed  Google Scholar 

  69. Garneau NL, Nuessle TM, Sloan MM, Santorico SA, Coughlin BC, Hayes JE. Crowdsourcing taste research: genetic and phenotypic predictors of bitter taste perception as a model. Front Integr Neurosci. 2014;8:33.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vors C, Drai J, Gabert L, Pineau G, Laville M, Vidal H, Guichard E, Michalski MC, Feron G. Salivary composition in obese vs normal-weight subjects: towards a role in postprandial lipid metabolism? Int J Obes. 2015;39:1425–8.

    Article  CAS  Google Scholar 

  71. Matsuda M, Liu Y, Mahankali S, Pu Y, Mahankali A, Wang J, DeFronzo RA, Fox PT, Gao JH. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48:1801–6.

    Article  CAS  PubMed  Google Scholar 

  72. Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M, Ravussin E, Reiman EM, Tataranni PA. Differential brain responses to satiation in obese and lean men. Diabetes. 2000;49:838–46.

    Article  CAS  PubMed  Google Scholar 

  73. Stoeckel LE, Weller RE, Cook 3rd EW, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage. 2008;41:636–47.

    Article  PubMed  Google Scholar 

  74. DelParigi A, Chen K, Salbe AD, Reiman EM, Tataranni PA. Sensory experience of food and obesity: a positron emission tomography study of the brain regions affected by tasting a liquid meal after a prolonged fast. NeuroImage. 2005;24:436–43.

    Article  PubMed  Google Scholar 

  75. Pannacciulli N, Del Parigi A, Chen K, Le DS, Reiman EM, Tataranni PA. Brain abnormalities in human obesity: a voxel-based morphometric study. NeuroImage. 2006;31:1419–25.

    Article  PubMed  Google Scholar 

  76. Velloso LA, Schwartz MW. Altered hypothalamic function in diet-induced obesity. Int J Obes. 2011;35:1455–65.

    Article  CAS  Google Scholar 

  77. Berthoud HR, Zheng H, Shin AC. Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery. Ann N Y Acad Sci. 2012;1264:36–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Valdivia S, Patrone A, Reynaldo M, Perello M. Acute high fat diet consumption activates the mesolimbic circuit and requires orexin signaling in a mouse model. PLoS One. 2014;9:e87478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Liang NC, Hajnal A, Norgren R. Sham feeding corn oil increases accumbens dopamine in the rat. Am J Phys Regul Integr Comp Phys. 2006;291:R1236–9.

    CAS  Google Scholar 

  80. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13:635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vucetic Z, Kimmel J, Reyes TM. Chronic high-fat diet drives postnatal epigenetic regulation of mu-opioid receptor in the brain. Neuropsychopharmacol. 2011;36:1199–206.

    Article  CAS  Google Scholar 

  82. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci. 2004;27:107–44.

    Article  CAS  PubMed  Google Scholar 

  83. Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev. 2013;14:2–18.

    Article  CAS  PubMed  Google Scholar 

  84. de Weijer BA, van de Giessen E, van Amelsvoort TA, Boot E, Braak B, Janssen IM, van de Laar A, Fliers E, Serlie MJ, Booij J. Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. EJNMMI Res. 2011;1:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Haltia LT, Rinne JO, Merisaari H, Maguire RP, Savontaus E, Helin S, Nagren K, Kaasinen V. Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse. 2007;61:748–56.

    Article  CAS  PubMed  Google Scholar 

  86. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS. Brain dopamine and obesity. Lancet. 2001;357:354–7.

    Article  CAS  PubMed  Google Scholar 

  87. Eisenstein SA, Antenor-Dorsey JA, Gredysa DM, Koller JM, Bihun EC, Ranck SA, Arbelaez AM, Klein S, Perlmutter JS, Moerlein SM, Black KJ, Hershey T. A comparison of D2 receptor specific binding in obese and normal-weight individuals using PET with (N-[(11)C]methyl)benperidol. Synapse. 2013;67:748–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kessler RM, Zald DH, Ansari MS, Li R, Cowan RL. Changes in dopamine release and dopamine D2/3 receptor levels with the development of mild obesity. Synapse. 2014;68:317–20.

    CAS  PubMed  Google Scholar 

  89. Dunn JP, Kessler RM, Feurer ID, Volkow ND, Patterson BW, Ansari MS, Li R, Marks-Shulman P, Abumrad NN. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes Care. 2012;35:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guo J, Simmons WK, Herscovitch P, Martin A, Hall KD. Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior. Mol Psychiatry. 2014;19:1078–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev. 2012;13:43–56.

    Article  CAS  PubMed  Google Scholar 

  92. Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;1350:43–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Berthoud HR, Lenard NR, Shin AC. Food reward, hyperphagia, and obesity. Am J Phys Regul Integr Comp Phys. 2011;300:R1266–77.

    CAS  Google Scholar 

  94. le Roux CW, Bueter M, Theis N, Werling M, Ashrafian H, Lowenstein C, Athanasiou T, Bloom SR, Spector AC, Olbers T, Lutz TA. Gastric bypass reduces fat intake and preference. Am J Phys Regul Integr Comp Phys. 2011;301:R1057–66.

    Google Scholar 

  95. Zheng H, Shin AC, Lenard NR, Townsend RL, Patterson LM, Sigalet DL, Berthoud HR. Meal patterns, satiety, and food choice in a rat model of roux-en-Y gastric bypass surgery. Am J Phys Regul Integr Comp Phys. 2009;297:R1273–82.

    CAS  Google Scholar 

  96. Mathes CM, Spector AC. Food selection and taste changes in humans after roux-en-Y gastric bypass surgery: a direct-measures approach. Physiol Behav. 2012;107:476–83.

    Article  CAS  PubMed  Google Scholar 

  97. Lutz TA, Bueter M. The physiology underlying roux-en-Y gastric bypass: a status report. Am J Phys Regul Integr Comp Phys. 2014;307:R1275–91.

    CAS  Google Scholar 

  98. Miras AD, le Roux CW. Bariatric surgery and taste: novel mechanisms of weight loss. Curr Opin Gastroenterol. 2010;26:140–5.

    Article  PubMed  Google Scholar 

  99. Behary P, Miras AD. Food preferences and underlying mechanisms after bariatric surgery. Proc Nutr Soc. 2015;74:419–25.

    Article  PubMed  Google Scholar 

  100. Ochner CN, Kwok Y, Conceicao E, Pantazatos SP, Puma LM, Carnell S, Teixeira J, Hirsch J, Geliebter A. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg. 2011;253:502–7.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, Ismail NA, Durighel G, Ahmed AR, Olbers T, Vincent RP, Alaghband-Zadeh J, Ghatei MA, Waldman AD, Frost GS, Bell JD, le Roux CW, Goldstone AP. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63:891–902.

    Article  PubMed  Google Scholar 

  102. Zolotukhin S. Metabolic hormones in saliva: origins and functions. Oral Dis. 2013;19:219–29.

    CAS  PubMed  Google Scholar 

  103. Shin YK, Martin B, Golden E, Dotson CD, Maudsley S, Kim W, Jang HJ, Mattson MP, Drucker DJ, Egan JM, Munger SD. Modulation of taste sensitivity by GLP-1 signaling. J Neurochem. 2008;106:455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kawai K, Sugimoto K, Nakashima K, Miura H, Ninomiya Y. Leptin as a modulator of sweet taste sensitivities in mice. Proc Natl Acad Sci U S A. 2000;97:11044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nakamura Y, Sanematsu K, Ohta R, Shirosaki S, Koyano K, Nonaka K, Shigemura N, Ninomiya Y. Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels. Diabetes. 2008;57:2661–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Verdich C, Toubro S, Buemann B, Lysgard Madsen J, Juul Holst J, Astrup A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety–effect of obesity and weight reduction. Int J Obes Relat Metab Disord. 2001;25:1206–14.

    Article  CAS  PubMed  Google Scholar 

  107. Vendrell J, Broch M, Vilarrasa N, Molina A, Gomez JM, Gutierrez C, Simon I, Soler J, Richart C. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res. 2004;12:962–71.

    Article  CAS  PubMed  Google Scholar 

  108. Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150:2518–25.

    Article  CAS  PubMed  Google Scholar 

  109. Skibicka KP. The central GLP-1: implications for food and drug reward. Front Neurosci. 2013;7:181.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wang XF, Liu JJ, Xia J, Liu J, Mirabella V, Pang ZP. Endogenous glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons. Cell Rep. 2015;12:726–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. van Bloemendaal L, IJ RG, JS TK, Barkhof F, RJ K, ML D, DJ V, Diamant M. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63:4186–96.

    Article  PubMed  CAS  Google Scholar 

  112. Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol. 2004;15:2792–800.

    Article  CAS  PubMed  Google Scholar 

  113. Ha CW, Lam YY, Holmes AJ. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World J Gastroenterol. 2014;20:16498–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Teng KT, Chang CY, Chang LF, Nesaretnam K. Modulation of obesity-induced inflammation by dietary fats: mechanisms and clinical evidence. Nutr J. 2014;13:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Teixeira TF, Collado MC, Ferreira CL, Bressan J, Peluzio MC. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res. 2012;32:637–47.

    Article  CAS  PubMed  Google Scholar 

  116. Wang H, Zhou M, Brand J, Huang L. Inflammation and taste disorders: mechanisms in taste buds. Ann N Y Acad Sci. 2009;1170:596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cohn ZJ, Kim A, Huang L, Brand J, Wang H. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells. BMC Neurosci. 2010;11:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Beidler LM, Smallman RL. Renewal of cells within taste buds. J Cell Biol. 1965;27:263–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cazettes F, Cohen JI, Yau PL, Talbot H, Convit A. Obesity-mediated inflammation may damage the brain circuit that regulates food intake. Brain Res. 2011;1373:101–9.

    Article  CAS  PubMed  Google Scholar 

  120. Lee S, Eguchi A, Tsuzuki S, Matsumura S, Inoue K, Iwanaga T, Masuda D, Yamashita S, Fushiki T. Expression of CD36 by olfactory receptor cells and its abundance on the epithelial surface in mice. PLoS One. 2015;10:e0133412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Oberland S, Ackels T, Gaab S, Pelz T, Spehr J, Spehr M, Neuhaus EM. CD36 is involved in oleic acid detection by the murine olfactory system. Front Cell Neurosci. 2015;9:366.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lacroix MC, Caillol M, Durieux D, Monnerie R, Grebert D, Pellerin L, Repond C, Tolle V, Zizzari P, Baly C. Long-lasting metabolic imbalance related to obesity alters olfactory tissue homeostasis and impairs olfactory-driven behaviors. Chem Senses. 2015;40:537–56.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Besnard.

Ethics declarations

Grant support

The author’s research was supported by the Agence Nationale de la Recherche Grants ANR-12-BSV1–0027-01, SensoFAT2 project (to PB), and ANR-11-LABX-0021-LipSTIC (to Laurent Lagrost).

Conflict of interest

The author has nothing to disclose.

Open access

This article is distributed under the terms of the Creative Commons Attribution License, which permits any use, distribution, and reproduction in any medium provided that the original author and source are credited.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besnard, P. Lipids and obesity: Also a matter of taste?. Rev Endocr Metab Disord 17, 159–170 (2016). https://doi.org/10.1007/s11154-016-9355-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9355-2

Keywords

Navigation