Skip to main content

Advertisement

Log in

Exercise resistance across the prediabetes phenotypes: Impact on insulin sensitivity and substrate metabolism

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Prediabetes is a heterogeneous term that encompasses different origins of insulin resistance and insulin secretion that contribute to distinct patterns of hyperglycemia. In fact, prediabetes is an umbrella term that characterizes individuals at high risk for developing type 2 diabetes (T2D) and/or cardiovascular disease (CVD). Based on current definitions there are at least 3 distinct phenotypes of prediabetes: impaired fasting glucose (IFG), impaired glucose tolerant (IGT), or the combination of both (IFG + IGT). Each phenotype is clinically relevant as they are uniquely recognized as having different levels of risk for progressing to T2D and CVD. Herein, we discuss the underlying pathophysiology that characterizes IFG, IGT and the combination, as well as examine how some of these phenotypes appear resistant to traditional exercise interventions. We propose that substrate metabolism differences between the prediabetes phenotypes may be a unifying mechanism that explains the inter-subject variation in response to exercise seen across obese, metabolic syndrome, pre-diabetic and T2D patients in the current literature. Ultimately, a better understanding of the pathophysiologic mechanisms that govern disturbances responsible for fasting vs. postprandial hyperglycemia and the combination of both is important for designing optimal and personalized exercise treatment strategies that treat and prevent hyperglycemia and CVD risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maruthur NM. The growing prevalence of type 2 diabetes: Increased incidence or improved survival? Curr Diab Rep. 2013;13(6):786–94.

    Article  CAS  PubMed  Google Scholar 

  2. Standards of medical care in diabetes-2015: summary of revisions. Diabetes Care 2015; 38 Suppl: S4.

  3. Faerch K, Borch Johnsen K, Holst JJ, et al. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: Does it matter for prevention and treatment of type 2 diabetes? Diabetologia. 2009;52(9):1714–23.

    Article  CAS  PubMed  Google Scholar 

  4. Holloway GP, Bonen A, Spriet LL. Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals. Am J Clin Nutr. 2009;89(1):455S–62S.

    Article  CAS  PubMed  Google Scholar 

  5. Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.

    Article  CAS  PubMed  Google Scholar 

  6. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  7. Church TS, Blair SN, Cocreham S, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: A randomized controlled trial. JAMA. 2010;304(20):2253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dube JJ, Allison K, Rousson V, et al. Exercise dose and insulin sensitivity: Relevance for diabetes prevention. Med Sci Sports Exerc. 2012;44(5):793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rynders CA, Weltman A. High-intensity exercise training for the prevention of type 2 diabetes mellitus. Phys Sportsmed. 2014;42(1):7–14.

    Article  PubMed  Google Scholar 

  10. Houmard JA, Tanner CJ, Slentz CA, et al. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol. 2004;96(1):101.

    Article  CAS  PubMed  Google Scholar 

  11. Malin SK, Solomon TPJ, Blaszczak A, Finnegan S, Filion J, Kirwan JP. Pancreatic beta cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am J Physiol Endocrinol Metabol. 2013;305(10):E1248–54.

    Article  CAS  Google Scholar 

  12. Abdul-Ghani MA, DeFronzo RA. Pathophysiology of prediabetes. Curr Diab Rep. 2009;9(3):193–9.

    Article  CAS  PubMed  Google Scholar 

  13. Faerch K, Vaag A, Holst JJ, et al. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia. 2008;51(5):853–61.

    Article  CAS  PubMed  Google Scholar 

  14. Tonjes A, Fasshauer M, Kratzsch J, et al. Adipokine pattern in subjects with impaired fasting glucose and impaired glucose tolerance in comparison to normal glucose tolerance and diabetes. PLoS One. 2010;5(11):e13911–1.

  15. Barrett EJ, Liu Z. The endothelial cell: An "early responder" in the development of insulin resistance. Rev Endocr Metab Disord. 2013;14(1):21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weyer C, Bogardus C, Pratley RE. Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 1999;48(11):2197–203.

    Article  CAS  PubMed  Google Scholar 

  17. Perreault L, Bergman BC, Playdon M, et al. Impaired fasting glucose with or without impaired glucose tolerance: progressive or parallel states of prediabetes? Am J Physiol Endocrinol Metabol. 2008;295(2):E428–35.

    Article  CAS  Google Scholar 

  18. Bock G, Dalla Man C, Campioni M, et al. Pathogenesis of pre-diabetes: Mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 2006;55(12):3536–49.

    Article  CAS  PubMed  Google Scholar 

  19. Baron AD, Schaeffer L, Shragg P, et al. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes. 1987;36(3):274–83.

    Article  CAS  PubMed  Google Scholar 

  20. Jani R, Molina M, Matsuda M, et al. Decreased non-insulin-dependent glucose clearance contributes to the rise in fasting plasma glucose in the nondiabetic range. Diabetes Care. 2008;31(2):311–5.

    Article  CAS  PubMed  Google Scholar 

  21. Perreault L, Faerch K, Kerege AA, et al. Hepatic glucose sensing is impaired, but can be normalized, in people with impaired fasting glucose. J Clin Endocrinol Metab. 2014;99(7):E1154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanat M, Norton L, Winnier D, et al. Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetol. 2011;48(3):209–17.

    Article  CAS  PubMed  Google Scholar 

  23. Abdul Ghani M, Jenkinson CP, Richardson D, et al. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: Results from the veterans administration genetic epidemiology study. Diabetes. 2006;55(5):1430–5.

    Article  CAS  PubMed  Google Scholar 

  24. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95. doi:10.2337/db09-9028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Godsland IF, Jeffs JA, Johnston DG. Loss of beta cell function as fasting glucose increases in the non-diabetic range. Diabetologia. 2004;47(7):1157–66.

    Article  CAS  PubMed  Google Scholar 

  26. Meyer C, Pimenta W, Woerle HJ, et al. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care. 2006;29(8):1909–14.

    Article  CAS  PubMed  Google Scholar 

  27. Abdul-Ghani MA, Matsuda M, Balas B, et al. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care. 2007;30(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  28. Kanat M, Mari A, Norton L, et al. Distinct beta-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes. 2012;61(2):447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang-Chen KJ, Mullur R, Bernal-Mizrachi E. Beta-cell failure as a complication of diabetes. Rev Endocr Metab Disord. 2008;9(4):329–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Faerch K, Johansen NB, Witte DR, et al. Relationship between insulin resistance and beta-cell dysfunction in subphenotypes of prediabetes and type 2 diabetes. J Clin Endocrinol Metab. 2015;100(2):707–16.

    Article  CAS  PubMed  Google Scholar 

  31. Faerch K, Witte DR, Tabak AG, et al. Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of type 2 diabetes: A post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet Diabetes Endocrinol. 2013;1(1):43–51.

    Article  PubMed  Google Scholar 

  32. Eggleston EM, Jahn LA, Barrett EJ. Early microvascular recruitment modulates subsequent insulin-mediated skeletal muscle glucose metabolism during lipid infusion. Diabetes Care. 2013;36(1):104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Z, Liu J, Jahn LA, et al. Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature. J Clin Endocrinol Metab. 2009;94(9):3543–9. doi:10.1210/jc.2009-0027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vincent MA, Clerk LH, Lindner JR, et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metabol. 2006;290(6):E1191–7.

    Article  CAS  Google Scholar 

  35. Hallmark R, Patrie JT, Liu Z, et al. The effect of exercise intensity on endothelial function in physically inactive lean and obese adults. PLoS One. 2014;9(1):e85450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Swift DL, Weltman JY, Patrie JT, et al. Predictors of improvement in endothelial function after exercise training in a diverse sample of postmenopausal women. J Women's Health. 2014;23(3):260–6.

    Article  Google Scholar 

  37. Rattigan S. Exercise and insulin-mediated capillary recruitment in muscle. Exerc Sport Sci Rev. 2005;33(1):43–8.

    PubMed  Google Scholar 

  38. Raitakari M, Knuuti MJ, Ruotsalainen U, et al. Insulin increases blood volume in human skeletal muscle: Studies using [15O]CO and positron emission tomography. Am J Phys. 1995;269(6):E1000–5.

    CAS  Google Scholar 

  39. Vollenweider P, Tappy L, Randin D, et al. Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest. 1993;92(1):147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taddei S, Virdis A, Mattei P, et al. Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension. Circulation. 1995;92(10):2911–8.

    Article  CAS  PubMed  Google Scholar 

  41. Steinberg HO, Brechtel G, Johnson A, et al. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94(3):1172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bekaert M, Van Nieuwenhove Y, Calders P, et al. Determinants of testosterone levels in human male obesity. Endocrine. 2015;50(1):202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pitteloud N, Mootha VK, Dwyer AA, et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care. 2005;28(7):1636–42.

    Article  CAS  PubMed  Google Scholar 

  44. Vasconsuelo A, Milanesi L, Boland R. Actions of 17beta-estradiol and testosterone in the mitochondria and their implications in aging. Ageing Res Rev. 2013;12(4):907–17.

    Article  CAS  PubMed  Google Scholar 

  45. Faerch K, Vaag A. Metabolic inflexibility is a common feature of impaired fasting glycaemia and impaired glucose tolerance. Acta Diabetol. 2011;48(4):349–53.

    Article  CAS  PubMed  Google Scholar 

  46. Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003;52(9):2191–7.

    Article  CAS  PubMed  Google Scholar 

  47. Kulkarni SS, Salehzadeh F, Fritz T, et al. Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metabolism. 2012;61(2):175–85.

    Article  CAS  PubMed  Google Scholar 

  48. Malin SK, Viskochil R, Oliver C, et al. Mild fasting hyperglycemia shifts fuel reliance towards fat during exercise in adults with impaired glucose tolerance. J Appl Physiol 2013.

  49. Malin SK, Haus JM, Solomon TPJ, Blaszczak A, Kashyap SR, Kirwan JP. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin resistant phenotypes. Am J Physiol Endocrinol Metabol. 2013;305(10):E1292–8.

    Article  CAS  Google Scholar 

  50. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aas V, Hessvik NP, Wettergreen M, et al. Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes. Biochim Biophys Acta. 2011;1812(1):94–105.

    Article  CAS  PubMed  Google Scholar 

  52. Roden M. Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes. 2005;29(Suppl 2):S111–5.

    Article  CAS  Google Scholar 

  53. Boushel R, Gnaiger E, Schjerling P, et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia. 2007;50(4):790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Holloszy JO. Skeletal muscle "mitochondrial deficiency" does not mediate insulin resistance. Am J Clin Nutr. 2009;89(1):463–S. doi:10.3945/ajcn.2008.26717C.

    Article  CAS  Google Scholar 

  55. Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.

    Article  CAS  PubMed  Google Scholar 

  56. Johannsen DL, Conley KE, Bajpeyi S, et al. Ectopic lipid accumulation and reduced glucose tolerance in elderly adults are accompanied by altered skeletal muscle mitochondrial activity. J Clin Endocrinol Metab. 2012;97(1):242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ukropcova B, McNeil M, Sereda O, et al. Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor. J Clin Invest. 2005;115(7):1934–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Osler M, Fritz T, Caidahl K, et al. Changes in gene expression in responders and nonresponders to a low-intensity walking intervention. Diabetes Care. 2015;38(6):1154–60.

    Article  CAS  PubMed  Google Scholar 

  59. Rynders CA, Weltman JY, Jiang B, et al. Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. J Clin Endocrinol Metab. 2014;99(1):220–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karstoft K, Winding K, Knudsen SH, et al. The Effects of Free-Living Interval-Walking Training on Glycemic Control, Body Composition, and Physical Fitness in Type 2 Diabetes Patients: A randomized, controlled trial. Diabetes Care 2012.

  61. Jung ME, Bourne JE, Beauchamp MR, et al. High-intensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res. 2015;2015:191595.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Davis CL, Pollock NK, Waller JL, et al. Exercise dose and diabetes risk in overweight and obese children: A randomized controlled trial. JAMA. 2012;308(11):1103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hamer M, Stamatakis E. Low-dose physical activity attenuates cardiovascular disease mortality in men and women with clustered metabolic risk factors. Circ Cardiovasc Qual Outcomes. 2012;5(4):494–9.

    Article  PubMed  Google Scholar 

  64. Malin SK, Braun B. Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc Sport Sci Rev. 2016;44(1):4–11.

    Article  PubMed  Google Scholar 

  65. Guo W, Wong S, Li M, et al. Testosterone plus low-intensity physical training in late life improves functional performance, skeletal muscle mitochondrial biogenesis, and mitochondrial quality control in male mice. PLoS One. 2012;7(12):e51180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gregg EW, Chen H, Wagenknecht LE, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308(23):2489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Look AHEAD. Research group, Wing RR, Bolin P, et al. cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–54.

    Article  CAS  Google Scholar 

  68. Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: A 20-year follow-up study. Lancet. 2008;371(9626):1783–9.

    Article  PubMed  Google Scholar 

  69. Group DPPR, Knowler WC, Fowler SE, et al. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet. 2009;374(9702):1677–86.

    Article  Google Scholar 

  70. Viollet B, Guigas B, Sanz Garcia N, et al. Cellular and molecular mechanisms of metformin: An overview. Clin Sci. 2012;122(6):253–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yates T, Khunti K, Bull F, et al. The role of physical activity in the management of impaired glucose tolerance: A systematic review. Diabetologia. 2007;50(6):1116–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Malin SK, Kirwan JP. Fasting hyperglycaemia blunts the reversal of impaired glucose tolerance after exercise training in obese older adults. Diabetes Obes Metab. 2012;14(9):835–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sigal RJ, Kenny GP, Boulé NG, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: A randomized trial. Ann Intern Med. 2007;147(6):357–69.

    Article  PubMed  Google Scholar 

  74. Balducci S, Zanuso S, Nicolucci A, et al. Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: A randomized controlled trial: the Italian diabetes and exercise study (IDES). Arch Intern Med. 2010;170(20):1794–803.

    Article  PubMed  Google Scholar 

  75. Ebbert JO, Elrashidi MY, Jensen MD. Managing overweight and obesity in adults to reduce cardiovascular disease risk. Curr Atheroscler Rep. 2014;16(10):445.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Coen PM, Tanner CJ, Helbling NL, et al. Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity. J Clin Invest. 2015;125(1):248–57.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kashyap SR, Bhatt DL, Wolski K, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: Analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36(8):2175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Malin SK, Gerber R, Chipkin SR, et al. Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care. 2012;35(1):131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sacks FM, Carey VJ, Anderson CA, et al. Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: The OmniCarb randomized clinical trial. JAMA. 2014;312(23):2531–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kozey Keadle S, Lyden K, Staudenmayer J, et al. The independent and combined effects of exercise training and reducing sedentary behavior on cardiometabolic risk factors. Appl Physiol Nutr Metab. 2014;39(7):770–80.

    Article  CAS  PubMed  Google Scholar 

  81. Solomon TPJ, Malin SK, Karstoft K, et al. The influence of hyperglycemia on the therapeutic effect of exercise on glycemic control in patients with type 2 diabetes mellitus. JAMA Internal Medicine 2013.

  82. Bouchard C, Blair SN, Church TS, et al. Adverse metabolic response to regular exercise: Is it a rare or common occurrence? PLoS One. 2012;7(5):e37887–7.

  83. Green DJ, Eijsvogels T, Bouts YM, et al. Exercise training and artery function in humans: Nonresponse and its relationship to cardiovascular risk factors. J Appl Physiol. 2014;117(4):345–52.

    Article  CAS  PubMed  Google Scholar 

  84. Thalacker-Mercer A, Stec M, Cui X, et al. Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy. Physiol Genomics. 2013;45(12):499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Boule NG, Weisnagel SJ, Lakka TA, et al. Effects of exercise training on glucose homeostasis: The HERITAGE Family Study. Diabetes Care. 2005;28(1):108–14.

    Article  PubMed  Google Scholar 

  86. Bouchard C, Sarzynski MA, Rice TK, et al. Genomic predictors of the maximal O(2) uptake response to standardized exercise training programs. J Appl Physiol (1985). 2011;110(5):1160–70.

  87. Holloszy JO, Schultz J, Kusnierkiewicz J, et al. Effects of exercise on glucose tolerance and insulin resistance. Brief review and some preliminary results. Acta Medica Scandinavica. Supplementum. 1986;711:55–65.

    CAS  Google Scholar 

  88. Kelley DE, Goodpaster BH. Effects of exercise on glucose homeostasis in type 2 diabetes mellitus. Med Sci Sports Exerc. 2001;33(6 Suppl):S495.

    Article  CAS  PubMed  Google Scholar 

  89. Perreault L, Pan Q, Mather K, et al. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: Results from the diabetes prevention program outcomes study. Lancet. 2012;379(9833):2243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dela F, von Linstow ME, Mikines KJ, et al. Physical training may enhance beta-cell function in type 2 diabetes. Am J Physiol Endocrinol Metabol. 2004;287(5):E1024–31.

    Article  CAS  Google Scholar 

  91. Faria G, Preto J, Almeida AB, et al. Fasting glycemia: a good predictor of weight loss after RYGB. Surg Obes Relat Dis. 2014;10(3):419–24.

    Article  PubMed  Google Scholar 

  92. Jurowich C, Thalheimer A, Hartmann D, et al. Improvement of type 2 diabetes mellitus (T2DM) after bariatric surgery–who fails in the early postoperative course? Obes Surg. 2012;22(10):1521–6.

    Article  CAS  PubMed  Google Scholar 

  93. Wang GF, Yan YX, Xu N, et al. Predictive factors of type 2 diabetes mellitus remission following bariatric surgery: A meta-analysis. Obes Surg. 2015;25(2):199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  94. McCullough PA, Gallagher MJ, Dejong AT, et al. Cardiorespiratory fitness and short-term complications after bariatric surgery. Chest. 2006;130(2):517–25.

    Article  PubMed  Google Scholar 

  95. Hennis PJ, Meale PM, Hurst RA, et al. Cardiopulmonary exercise testing predicts postoperative outcome in patients undergoing gastric bypass surgery. Br J Anaesth. 2012;109(4):566–71.

    Article  CAS  PubMed  Google Scholar 

  96. Khanna V, Malin SK, Bena J, et al. Adults with long-duration type 2 diabetes have blunted glycemic and ß-cell function improvements after bariatric surgery. Obesity. 2015;23(3):523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Malin SK, Bena J, Abood B, et al. Attenuated improvements in adiponectin and fat loss characterize type 2 diabetes non-remission status after bariatric surgery. Diabetes Obes Metabol. 2014;6(12):1230–8.

    Article  CAS  Google Scholar 

  98. Gavin TP, Ernst JM, Caudill SE, et al. Insulin sensitivity is related to glycemic control in type 2 diabetes and diabetes remission after roux-en Y gastric bypass. Surgery. 2014;155(6):1036–43.

    Article  PubMed  Google Scholar 

  99. Yates T, Davies MJ, Edwardson C, et al. Adverse responses and physical activity: Secondary analysis of the PREPARE trial. Med Sci Sports Exerc. 2014;46(8):1617–23.

    Article  PubMed  Google Scholar 

  100. Van Dijk JW, Manders RJ, Canfora EE, et al. Exercise and 24-h glycemic control: Equal effects for all type 2 diabetes patients? Med Sci Sports Exerc. 2013;45(4):628–35.

    Article  PubMed  CAS  Google Scholar 

  101. Solomon TPJ, Malin SK, Karstoft K, Kashyap SR, Haus JM, Kirwan JP. Pancreatic β-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity. J Clin Endocrinol Metab. 2013;98(10):4176–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Eikenberg JD, Savla J, Marinik EL, et al. Prediabetes phenotype influences improvements in glucose homeostasis with resistance training. PLoS One. 2016;11(2):e0148009.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Johannsen NM, Sparks LM, Zhang Z, et al. Determinants of the changes in glycemic control with exercise training in type 2 diabetes: A randomized trial. PLoS One. 2013;8(6):e62973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Layne AS, Nasrallah S, South MA, et al. Impaired muscle AMPK activation in the metabolic syndrome may attenuate improved insulin action after exercise training. J Clin Endocrinol Metab. 2011;96(6):1815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. De Filippis E, Alvarez G, Berria R, et al. Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol Endocrinol Metabol. 2008;294(3):E607–14.

    Article  CAS  Google Scholar 

  106. Heilbronn LK, Gan SK, Turner N, et al. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab. 2007;92(4):1467–73.

    Article  CAS  PubMed  Google Scholar 

  107. Nolan CJ, Ruderman NB, Kahn SE, et al. Insulin resistance as a physiological defense against metabolic stress: Implications for the management of subsets of type 2 diabetes. Diabetes. 2015;64(3):673–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mittra S, Bansal VS, Bhatnagar PK. From a glucocentric to a lipocentric approach towards metabolic syndrome. Drug Discov Today. 2008;13(5–6):211–8.

    Article  CAS  PubMed  Google Scholar 

  109. van de Weijer T, Sparks LM, Phielix E, et al. Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus. PLoS One. 2013;8(2):e51648–8.

  110. Braun B, Sharoff C, Chipkin SR, et al. Effects of insulin resistance on substrate utilization during exercise in overweight women. J Appl Physiol. 2004;97(3):991–7.

    Article  CAS  PubMed  Google Scholar 

  111. Brandon AE, Hoy AJ, Wright LE, et al. The evolution of insulin resistance in muscle of the glucose infused rat. Arch Biochem Biophys. 2011;509(2):133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kang J, Kelley DE, Robertson RJ, et al. Substrate utilization and glucose turnover during exercise of varying intensities in individuals with NIDDM. Med Sci Sport Exerc. 1999;31(1):82.

    Article  CAS  Google Scholar 

  113. Kanaley JA, Cryer PE, Jensen MD. Fatty acid kinetic responses to exercise. Effects of obesity, body fat distribution, and energy-restricted diet. J Clin Invest. 1993;92(1):255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Goodpaster BH, Wolfe RR, Kelley DE. Effects of obesity on substrate utilization during exercise. Obes Res. 2002;10(7):575–84.

    Article  CAS  PubMed  Google Scholar 

  115. Horowitz JF, Klein S. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity. J Appl Physiol. 2000;89(6):2276–82.

    CAS  PubMed  Google Scholar 

  116. Sparks LM, Johannsen NM, Church TS, et al. Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J Clin Endocrinol Metab. 2013;98(4):1694–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stephens NA, Xie H, Johannsen NM, et al. A transcriptional signature of "exercise resistance" in skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism. 2015;64(9):999–1004.

    Article  CAS  PubMed  Google Scholar 

  118. Galgani JE, Vasquez K, Watkins G, et al. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs. insulin-sensitive nondiabetic, nonobese humans. J Clin Endocrinol Metab. 2013;98(4):E646–53.

    Article  CAS  PubMed  Google Scholar 

  119. Lessard SJ, Rivas DA, Alves-Wagner AB, et al. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks. Diabetes. 2013;62(8):2717–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

SKM wrote the manuscript and EJB, ZL, and AW reviewed/edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. Malin.

Ethics declarations

Authors disclosure

Authors have nothing to disclose.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malin, S.K., Liu, Z., Barrett, E.J. et al. Exercise resistance across the prediabetes phenotypes: Impact on insulin sensitivity and substrate metabolism. Rev Endocr Metab Disord 17, 81–90 (2016). https://doi.org/10.1007/s11154-016-9352-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9352-5

Keywords

Navigation