Skip to main content

Advertisement

Log in

Abstract

In the past 15 years, the field of physiology has been radically challenged by landmark studies using novel tools of genetic engineering. Particular to our interest, the reciprocal interactions between the skeleton and the nervous system were shown to be major ones. The demonstration that brain, via multiple pathways, is a powerful regulator of bone growth, has shed light on an important central regulation of skeletal homeostasis. More recently, it was shown that bone might return the favor to the brain through the secretion of a bone-derived hormone, osteocalcin. The skeleton influences development and cognitive functions of the central nervous system at different stages throughout life suggesting an intimate dialogue between bone and brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bernard C. Introduction à l’étude de la médecine expérimentale. Paris: Flammarion; 1865.

    Google Scholar 

  2. Cannon WB. The wisdom of the body. New York: W W Norton & Co; 1932.

    Google Scholar 

  3. Hori M, Shimizu Y, Fukumoto S. Minireview: fibroblast growth factor 23 in phosphate homeostasis and bone metabolism. Endocrinology. 2011;152:4–10.

    Article  CAS  PubMed  Google Scholar 

  4. Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481:314–20.

    Article  CAS  PubMed  Google Scholar 

  5. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144:796–809.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Prié D, Ureña Torres P, Friedlander G. Latest findings in phosphate homeostasis. Kidney Int. 2009;75:882–9.

    Article  PubMed  CAS  Google Scholar 

  8. Quarles LD. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol. 2012;8:276–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Karsenty G, Oury F. Biology without walls: the novel endocrinology of bone. Annu Rev Physiol. 2012;74:87–105.

    Article  CAS  PubMed  Google Scholar 

  11. Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J, et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest. 2013;123:2421–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pi M, Chen L, Huang M-Z, Zhu W, Ringhofer B, Luo J, et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One. 2008;3:e3858.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Pi M, Quarles LD. Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology. 2012;153:2062–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wei J, Hanna T, Suda N, Karsenty G, Ducy P. Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes. 2014;63:1021–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Confavreux CB, Szulc P, Casey R, Varennes A, Goudable J, Chapurlat RD. Lower serum osteocalcin is associated with more severe metabolic syndrome in elderly men from the MINOS cohort. Eur J Endocrinol Eur Fed Endocrinol Soc. 2014;171:275–83.

    Article  CAS  Google Scholar 

  16. De la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol. 2014;88:548–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Foster W. Hormone-mediated nutritional control of sexual behavior in male dung flies. Science. 1967;158:1596–7.

    Article  CAS  PubMed  Google Scholar 

  18. Gurney ME, Konishi M. Hormone-induced sexual differentiation of brain and behavior in zebra finches. Science. 1980;208:1380–3.

    Article  CAS  PubMed  Google Scholar 

  19. Manson JE. Prenatal exposure to sex steroid hormones and behavioral/cognitive outcomes. Metabolism. 2008;57 Suppl 2:S16–21.

    Article  CAS  PubMed  Google Scholar 

  20. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20:659–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cooper RR. Nerves in cortical bone. Science. 1968;160:327–8.

    Article  CAS  PubMed  Google Scholar 

  22. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207.

    Article  CAS  PubMed  Google Scholar 

  23. Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, et al. Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci U S A. 2004;101:3258–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17.

    Article  CAS  PubMed  Google Scholar 

  25. Oury F, Khrimian L, Denny CA, Gardin A, Chamouni A, Goeden N, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell. 2013;155:228–41.

    Article  CAS  PubMed  Google Scholar 

  26. Legroux-Gerot I, Vignau J, Collier F, Cortet B. Bone loss associated with anorexia nervosa. Joint Bone Spine Rev Rhum. 2005;72:489–95.

    Article  Google Scholar 

  27. Misra M, Klibanski A. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism. Neuroendocrinology. 2011;93:65–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    Article  CAS  PubMed  Google Scholar 

  29. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269:543–6.

    Article  CAS  PubMed  Google Scholar 

  30. Chehab FF, Lim ME, Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet. 1996;12:318–20.

    Article  CAS  PubMed  Google Scholar 

  31. Gibson WT, Farooqi IS, Moreau M, DePaoli AM, Lawrence E, O’Rahilly S, et al. Congenital leptin deficiency due to homozygosity for the Delta133G mutation: report of another case and evaluation of response to 4 years of leptin therapy. J Clin Endocrinol Metab. 2004;89:4821–6.

    Article  CAS  PubMed  Google Scholar 

  32. Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, et al. Peripheral leptin regulates bone formation. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28:22–34.

    Article  CAS  Google Scholar 

  33. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.

    Article  CAS  PubMed  Google Scholar 

  34. Shi Y, Yadav VK, Suda N, Liu XS, Guo XE, Myers MG, et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A. 2008;105:20529–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434:514–20.

    Article  CAS  PubMed  Google Scholar 

  36. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4:638–49.

    Article  CAS  PubMed  Google Scholar 

  37. Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case–control study. J Hypertens. 2006;24:581–9.

    Article  CAS  PubMed  Google Scholar 

  38. Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of beta-blockers and risk of fractures. JAMA. 2004;292:1326–32.

    Article  CAS  PubMed  Google Scholar 

  39. Obri A, Makinistoglu MP, Zhang H, Karsenty G. HDAC4 integrates PTH and sympathetic signaling in osteoblasts. J Cell Biol. 2014;205:771–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell. 2005;122:803–15.

    Article  CAS  PubMed  Google Scholar 

  41. Takeda S. Osteoporosis: a neuroskeletal disease? Int J Biochem Cell Biol. 2009;41:455–9.

    Article  CAS  PubMed  Google Scholar 

  42. Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 1996;387:113–6.

    Article  CAS  PubMed  Google Scholar 

  43. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron. 2004;42:983–91.

    Article  CAS  PubMed  Google Scholar 

  44. Yadav VK, Oury F, Suda N, Liu Z-W, Gao X-B, Confavreux C, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138:976–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Oury F, Yadav VK, Wang Y, Zhou B, Liu XS, Guo XE, et al. CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev. 2010;24:2330–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, et al. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab. 2013;17:901–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature. 1998;393:72–6.

    Article  CAS  PubMed  Google Scholar 

  48. Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron. 1998;21:1375–85.

    Article  CAS  PubMed  Google Scholar 

  49. Singh MK, Elefteriou F, Karsenty G. Cocaine and amphetamine-regulated transcript may regulate bone remodeling as a circulating molecule. Endocrinology. 2008;149:3933–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Baraban SC. Neuropeptide Y, and limbic seizures. Rev Neurosci. 1998;9:117–28.

    Article  CAS  PubMed  Google Scholar 

  51. Lin S, Boey D, Herzog H. NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides. 2004;38:189–200.

    Article  CAS  PubMed  Google Scholar 

  52. Baldock PA, Allison SJ, Lundberg P, Lee NJ, Slack K, Lin E-JD, et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem. 2007;282:19092–102.

    Article  CAS  PubMed  Google Scholar 

  53. Lee NJ, Nguyen AD, Enriquez RF, Doyle KL, Sainsbury A, Baldock PA, et al. Osteoblast specific Y1 receptor deletion enhances bone mass. Bone. 2011;48:461–7.

    Article  CAS  PubMed  Google Scholar 

  54. Baldock PA, Allison S, McDonald MM, Sainsbury A, Enriquez RF, Little DG, et al. Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21:1600–7.

    Article  CAS  Google Scholar 

  55. Brighton PJ, Szekeres PG, Willars GB. Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol Rev. 2004;56:231–48.

    Article  CAS  PubMed  Google Scholar 

  56. Hainerová I, Torekov SS, Ek J, Finková M, Borch-Johnsen K, Jørgensen T, et al. Association between neuromedin U gene variants and overweight and obesity. J Clin Endocrinol Metab. 2006;91:5057–63.

    Article  PubMed  CAS  Google Scholar 

  57. Sato S, Hanada R, Kimura A, Abe T, Matsumoto T, Iwasaki M, et al. Central control of bone remodeling by neuromedin U. Nat Med. 2007;13:1234–40.

    Article  CAS  PubMed  Google Scholar 

  58. Eimar H, Tamimi I, Murshed M, Tamimi F. Cholinergic regulation of bone. J Musculoskelet Neuronal Interact. 2013;13:124–32.

    CAS  PubMed  Google Scholar 

  59. Shi Y, Oury F, Yadav VK, Wess J, Liu XS, Guo XE, et al. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab. 2010;11:231–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Sisask G, Bjurholm A, Ahmed M, Kreicbergs A. The development of autonomic innervation in bone and joints of the rat. J Auton Nerv Syst. 1996;59:27–33.

    Article  CAS  PubMed  Google Scholar 

  61. Bajayo A, Bar A, Denes A, Bachar M, Kram V, Attar-Namdar M, et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci U S A. 2012;109:15455–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H. Osteoprotection by semaphorin 3A. Nature. 2012;485:69–74.

    Article  CAS  PubMed  Google Scholar 

  63. Tran TS, Kolodkin AL, Bharadwaj R. Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol. 2007;23:263–92.

    Article  CAS  PubMed  Google Scholar 

  64. Hughes A, Kleine-Albers J, Helfrich MH, Ralston SH, Rogers MJ. A class III semaphorin (Sema3e) inhibits mouse osteoblast migration and decreases osteoclast formation in vitro. Calcif Tissue Int. 2012;90:151–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Fukuda T, Takeda S, Xu R, Ochi H, Sunamura S, Sato T, et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature. 2013;497:490–3.

    Article  CAS  PubMed  Google Scholar 

  66. Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, et al. TSH is a negative regulator of skeletal remodeling. Cell. 2003;115:151–62.

    Article  CAS  PubMed  Google Scholar 

  67. Sun L, Zhu L-L, Lu P, Yuen T, Li J, Ma R, et al. Genetic confirmation for a central role for TNFα in the direct action of thyroid stimulating hormone on the skeleton. Proc Natl Acad Sci U S A. 2013;110:9891–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Baliram R, Sun L, Cao J, Li J, Latif R, Huber AK, et al. Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J Clin Invest. 2012;122:3737–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, et al. FSH directly regulates bone mass. Cell. 2006;125:247–60.

    Article  CAS  PubMed  Google Scholar 

  70. Iqbal J, Blair HC, Zallone A, Sun L, Zaidi M. Further evidence that FSH causes bone loss independently of low estrogen. Endocrine. 2012;41:171–5.

    Article  CAS  PubMed  Google Scholar 

  71. Rilling JK, Young LJ. The biology of mammalian parenting and its effect on offspring social development. Science. 2014;345:771–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ajmal A, Joffe H, Nachtigall LB. Psychotropic-induced hyperprolactinemia: a clinical review. Psychosomatics. 2014;55:29–36.

    Article  PubMed  Google Scholar 

  73. Abraham G, Paing WW, Kaminski J, Joseph A, Kohegyi E, Josiassen RC. Effects of elevated serum prolactin on bone mineral density and bone metabolism in female patients with schizophrenia: a prospective study. Am J Psychiatry. 2003;160:1618–20.

    Article  PubMed  Google Scholar 

  74. Seriwatanachai D, Thongchote K, Charoenphandhu N, Pandaranandaka J, Tudpor K, Teerapornpuntakit J, et al. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone. 2008;42:535–46.

    Article  CAS  PubMed  Google Scholar 

  75. Seriwatanachai D, Charoenphandhu N, Suthiphongchai T, Krishnamra N. Prolactin decreases the expression ratio of receptor activator of nuclear factor kappaB ligand/osteoprotegerin in human fetal osteoblast cells. Cell Biol Int. 2008;32:1126–35.

    Article  CAS  PubMed  Google Scholar 

  76. Charoenphandhu N, Limlomwongse L, Krishnamra N. Prolactin directly stimulates transcellular active calcium transport in the duodenum of female rats. Can J Physiol Pharmacol. 2001;79:430–8.

    Article  CAS  PubMed  Google Scholar 

  77. Tamma R, Colaianni G, Zhu LL, DiBenedetto A, Greco G, Montemurro G, et al. Oxytocin is an anabolic bone hormone. Proc Natl Acad Sci U S A. 2009;106(17):7149–54.

  78. Tamma R, Sun L, Cuscito C, Lu P, Corcelli M, Li J, et al. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc Natl Acad Sci U S A. 2013;110:18644–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Camerino C, Zayzafoon M, Rymaszewski M, Heiny J, Rios M, Hauschka PV. Central depletion of brain-derived neurotrophic factor in mice results in high bone mass and metabolic phenotype. Endocrinology. 2012;153:5394–405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Zaidi M, Sun L, Robinson LJ, Tourkova IL, Liu L, Wang Y, et al. ACTH protects against glucocorticoid-induced osteonecrosis of bone. Proc Natl Acad Sci U S A. 2010;107:8782–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A. 2008;105:5266–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Chamouni A, Oury F. Reciprocal interaction between bone and gonads. Arch Biochem Biophys. 2014;561C:147–53.

    Article  CAS  Google Scholar 

  83. De Toni L, De Filippis V, Tescari S, Ferigo M, Ferlin A, Scattolini V, et al. Uncarboxylated osteocalcin stimulates 25-hydroxy vitamin D production in Leydig cell line through a GPRC6a-dependent pathway. Endocrinology. 2014;155:4266–74.

    Article  PubMed  CAS  Google Scholar 

  84. Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26:1680–3.

    Article  CAS  Google Scholar 

  85. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.

    Article  CAS  PubMed  Google Scholar 

  86. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.

    Article  CAS  PubMed  Google Scholar 

  87. Walther DJ, Peter J-U, Bashammakh S, Hörtnagl H, Voits M, Fink H, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003;299:76.

    Article  CAS  PubMed  Google Scholar 

  88. Jessberger S, Gage FH. Adult neurogenesis: bridging the gap between mice and humans. Trends Cell Biol. 2014;24:558–63.

    Article  PubMed  Google Scholar 

  89. Trivier E, De Cesare D, Jacquot S, Pannetier S, Zackai E, Young I, et al. Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature. 1996;384:567–70.

  90. Pereira PM, Schneider A, Pannetier S, Heron D, Hanauer A. Coffin-Lowry syndrome. Eur J Hum Genet. 2010;18:627–33.

  91. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry syndrome. Cell. 2004;117:387–98.

    Article  CAS  PubMed  Google Scholar 

  92. Xiao G, Jiang D, Ge C, Zhao Z, Lai Y, Boules H, et al. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem. 2005;280:30689–96.

    Article  CAS  PubMed  Google Scholar 

  93. Zeniou M, Ding T, Trivier E, Hanauer A. Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin-Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Hum Mol Genet. 2002;11:2929–40.

    Article  CAS  PubMed  Google Scholar 

  94. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157:163–86.

    Article  CAS  PubMed  Google Scholar 

  95. Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet. 1997;16:307–10.

    Article  CAS  PubMed  Google Scholar 

  96. Cohen MM. Biology of RUNX2 and cleidocranial dysplasia. J Craniofac Surg. 2013;24:130–3.

    Article  PubMed  Google Scholar 

  97. Takenouchi T, Sato W, Torii C, Kosaki K. Progressive cognitive decline in an adult patient with cleidocranial dysplasia. Eur J Med Genet. 2014;57:319–21.

    Article  PubMed  Google Scholar 

  98. Gierthmühlen J, Binder A, Baron R. Mechanism-based treatment in complex regional pain syndromes. Nat Rev Neurol. 2014;10:518–28.

    Article  PubMed  CAS  Google Scholar 

  99. Confavreux CB. Interactions between bone tissue and energy metabolism. Joint Bone Spine Rev Rhum. 2010;77:287–9.

    Article  Google Scholar 

  100. Fava M, Kendler KS. Major depressive disorder. Neuron. 2000;28:335–41.

    Article  CAS  PubMed  Google Scholar 

  101. Belmaker RH, Agam G. Major depressive disorder. N Engl J Med. 2008;358:55–68.

    Article  CAS  PubMed  Google Scholar 

  102. Eom C-S, Lee H-K, Ye S, Park SM, Cho K-H. Use of selective serotonin reuptake inhibitors and risk of fracture: a systematic review and meta-analysis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27:1186–95.

    Article  CAS  Google Scholar 

  103. Altindag O, Altindag A, Asoglu M, Gunes M, Soran N, Deveci Z. Relation of cortisol levels and bone mineral density among premenopausal women with major depression. Int J Clin Pract. 2007;61:416–20.

    Article  CAS  PubMed  Google Scholar 

  104. Rizzoli R, Cooper C, Reginster J-Y, Abrahamsen B, Adachi JD, Brandi ML, et al. Antidepressant medications and osteoporosis. Bone. 2012;51:606–13.

  105. Cizza G, Primma S, Csako G. Depression as a risk factor for osteoporosis. Trends Endocrinol Metab. 2009;20:367–73.

  106. Michelson D, Stratakis C, Hill L, Reynolds J, Galliven E, Chrousos G, et al. Bone mineral density in women with depression. N Engl J Med. 1996;335:1176–81.

  107. Howes OD, Murray RM. Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet. 2014;383:1677–87.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Kishimoto T, De Hert M, Carlson HE, Manu P, Correll CU. Osteoporosis and fracture risk in people with schizophrenia. Curr Opin Psychiatry. 2012;25:415–29.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Mayeux R. Clinical practice. Early Alzheimer’s disease. N Engl J Med. 2010;362:2194–201.

    Article  CAS  PubMed  Google Scholar 

  110. Zhou R, Zhou H, Rui L, Xu J. Bone loss and osteoporosis are associated with conversion from mild cognitive impairment to Alzheimer’s disease. Curr Alzheimer Res. 2014;11:706–13.

    Article  CAS  PubMed  Google Scholar 

  111. Tan ZS, Seshadri S, Beiser A, Zhang Y, Felson D, Hannan MT, et al. Bone mineral density and the risk of Alzheimer disease. Arch Neurol. 2005;62:107–11.

    Article  PubMed  Google Scholar 

  112. Elefant E, Vauzelle C, Beghin D. Centre de référence sur les agents tératogènes (CRAT): a pioneer center. Therapie. 2014;69:39–45.

    Article  PubMed  Google Scholar 

  113. Stevenson RE, Burton OM, Ferlauto GJ, Taylor HA. Hazards of oral anticoagulants during pregnancy. JAMA. 1980;243:1549–51.

    Article  CAS  PubMed  Google Scholar 

  114. Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, et al. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science. 2014;346:89–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Oury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamouni, A., Schreiweis, C. & Oury, F. Bone, brain & beyond. Rev Endocr Metab Disord 16, 99–113 (2015). https://doi.org/10.1007/s11154-015-9312-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-015-9312-5

Keywords

Navigation