Skip to main content

Advertisement

Log in

Adiponectin and energy homeostasis

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

White adipose tissue (WAT) is the premier energy depot. Since the discovery of the hormonal properties of adipose-secreted proteins such as leptin and adiponectin, WAT has been classified as an endocrine organ. Although many regulatory effects of the adipocyte-derived hormones on various biological systems have been identified, maintaining systemic energy homeostasis is still the essential function of most adipocyte-derived hormones. Adiponectin is one adipocyte-derived hormone and well known for its effect in improving insulin sensitivity in liver and skeletal muscle. Unlike most other adipocyte-derived hormones, adiponectin gene expression and blood concentration are inversely associated with adiposity. Interestingly, recent studies have demonstrated that, in addition to its insulin sensitizing effects, adiponectin plays an important role in maintaining energy homeostasis. In this review, we summarize the progress of research about 1) the causal relationship of adiposity, energy intake, and adiponectin gene expression; and 2) the regulatory role of adiponectin in systemic energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ottaviani E, Malagoli D, Franceschi C: The evolution of the adipose tissue: a neglected enigma. Gen Comp Endocrinol; 174(1): 1–4.

  2. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world–a growing challenge. N Engl J Med. 2007;356(3):213–5.

    Article  CAS  PubMed  Google Scholar 

  3. Combs TP, Berg AH, Rajala MW, et al. Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes. 2003;52(2):268–76.

    Article  CAS  PubMed  Google Scholar 

  4. Qiao L, Lee B, Kinney B, Yoo HS, Shao J: Energy intake and adiponectin gene expression. Am J Physiol Endocrinol Metab; 300(5): E809-16.

  5. Wang Z, Masternak MM, Al-Regaiey KA, Bartke A. Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and calorie-restricted mice. Endocrinology. 2007;148(6):2845–53.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu M, Miura J, Lu LX, et al. Circulating adiponectin levels increase in rats on caloric restriction: the potential for insulin sensitization. Exp Gerontol. 2004;39(7):1049–59.

    Article  CAS  PubMed  Google Scholar 

  7. Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005;6(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  8. Stefan N, Vozarova B, Funahashi T, et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes. 2002;51(6):1884–8.

    Article  CAS  PubMed  Google Scholar 

  9. Krakoff J, Funahashi T, Stehouwer CD, et al. Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care. 2003;26(6):1745–51.

    Article  CAS  PubMed  Google Scholar 

  10. Lindsay RS, Funahashi T, Hanson RL, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet. 2002;360(9326):57–8.

    Article  CAS  PubMed  Google Scholar 

  11. Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab. 2002;13(2):84–9.

    Article  CAS  PubMed  Google Scholar 

  12. Fontana L, Klein S. Aging, adiposity, and calorie restriction. JAMA. 2007;297(9):986–94.

    Article  CAS  PubMed  Google Scholar 

  13. Varady KA, Hellerstein MK. Do calorie restriction or alternate-day fasting regimens modulate adipose tissue physiology in a way that reduces chronic disease risk? Nutr Rev. 2008;66(6):333–42.

    Article  PubMed  Google Scholar 

  14. Gredilla R, Barja G. Minireview: the role of oxidative stress in relation to caloric restriction and longevity. Endocrinology. 2005;146(9):3713–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hursting SD, Lavigne JA, Berrigan D, Perkins SN, Barrett JC. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med. 2003;54:131–52.

    Article  CAS  PubMed  Google Scholar 

  16. Redman LM, Heilbronn LK, Martin CK, Alfonso A, Smith SR, Ravussin E. Effect of calorie restriction with or without exercise on body composition and fat distribution. J Clin Endocrinol Metab. 2007;92(3):865–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ahima RS. Adipose tissue as an endocrine organ. Obesity (Silver Spring). 2006;14 Suppl 5:242S–9S.

    Article  CAS  Google Scholar 

  18. Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine. 2006;29(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  19. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95(5):2409–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307–12.

    Article  CAS  PubMed  Google Scholar 

  21. Bruun JM, Lihn AS, Verdich C, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003;285(3):E527–33.

    CAS  PubMed  Google Scholar 

  22. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20(6):1595–9.

    Article  CAS  PubMed  Google Scholar 

  23. Salas-Salvado J, Bullo M, Garcia-Lorda P, et al. Subcutaneous adipose tissue cytokine production is not responsible for the restoration of systemic inflammation markers during weight loss. Int J Obes (Lond). 2006;30(12):1714–20.

    Article  CAS  Google Scholar 

  24. Weiss EP, Racette SB, Villareal DT, et al. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am J Clin Nutr. 2006;84(5):1033–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Delporte ML, Brichard SM, Hermans MP, Beguin C, Lambert M. Hyperadiponectinaemia in anorexia nervosa. Clin Endocrinol (Oxf). 2003;58(1):22–9.

    Article  CAS  Google Scholar 

  26. Anderlova K, Kremen J, Dolezalova R, et al. The influence of very-low-calorie-diet on serum leptin, soluble leptin receptor, adiponectin and resistin levels in obese women. Physiol Res. 2006;55(3):277–83.

    CAS  PubMed  Google Scholar 

  27. Garaulet M, Viguerie N, Porubsky S, et al. Adiponectin gene expression and plasma values in obese women during very-low-calorie diet. Relationship with cardiovascular risk factors and insulin resistance. J Clin Endocrinol Metab. 2004;89(2):756–60.

    Article  CAS  PubMed  Google Scholar 

  28. Lejeune MP, Hukshorn CJ, Saris WH, Westerterp-Plantenga MS. Effects of very low calorie diet induced body weight loss with or without human pegylated recombinant leptin treatment on changes in ghrelin and adiponectin concentrations. Physiol Behav. 2007;91(2–3):274–80.

    Article  CAS  PubMed  Google Scholar 

  29. Xydakis AM, Case CC, Jones PH, et al. Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight loss through caloric restriction. J Clin Endocrinol Metab. 2004;89(6):2697–703.

    Article  CAS  PubMed  Google Scholar 

  30. Wolfe BE, Jimerson DC, Orlova C, Mantzoros CS. Effect of dieting on plasma leptin, soluble leptin receptor, adiponectin and resistin levels in healthy volunteers. Clin Endocrinol (Oxf). 2004;61(3):332–8.

    Article  CAS  Google Scholar 

  31. Imbeault P. Environmental influences on adiponectin levels in humans. Appl Physiol Nutr Metab. 2007;32(3):505–11.

    Article  CAS  PubMed  Google Scholar 

  32. English PJ, Coughlin SR, Hayden K, Malik IA, Wilding JP. Plasma adiponectin increases postprandially in obese, but not in lean, subjects. Obes Res. 2003;11(7):839–44.

    Article  PubMed  Google Scholar 

  33. Peake PW, Kriketos AD, Denyer GS, Campbell LV, Charlesworth JA. The postprandial response of adiponectin to a high-fat meal in normal and insulin-resistant subjects. Int J Obes Relat Metab Disord. 2003;27(6):657–62.

    Article  CAS  PubMed  Google Scholar 

  34. Milan G, Granzotto M, Scarda A, et al. Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obes Res. 2002;10(11):1095–103.

    Article  CAS  PubMed  Google Scholar 

  35. Piccio L, Stark JL, Cross AH. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol. 2008;84(4):940–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wheatley KE, Nogueira LM, Perkins SN, Hursting SD: Differential effects of calorie restriction and exercise on the adipose transcriptome in diet-induced obese mice. J Obes; 2011: 265417.

  37. Hoffstedt J, Arvidsson E, Sjolin E, Wahlen K, Arner P. Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance. J Clin Endocrinol Metab. 2004;89(3):1391–6.

    Article  CAS  PubMed  Google Scholar 

  38. Pellme F, Smith U, Funahashi T, et al. Circulating adiponectin levels are reduced in nonobese but insulin-resistant first-degree relatives of type 2 diabetic patients. Diabetes. 2003;52(5):1182–6.

    Article  CAS  PubMed  Google Scholar 

  39. Vozarova B, Stefan N, Lindsay RS, et al. Low plasma adiponectin concentrations do not predict weight gain in humans. Diabetes. 2002;51(10):2964–7.

    Article  CAS  PubMed  Google Scholar 

  40. Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930–5.

    Article  CAS  PubMed  Google Scholar 

  41. Polak J, Klimcakova E, Moro C, et al. Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin 6, and tumor necrosis factor alpha in obese women. Metabolism. 2006;55(10):1375–81.

    Article  CAS  PubMed  Google Scholar 

  42. Liu YM, Lacorte JM, Viguerie N, et al. Adiponectin gene expression in subcutaneous adipose tissue of obese women in response to short-term very low calorie diet and refeeding. J Clin Endocrinol Metab. 2003;88(12):5881–6.

    Article  CAS  PubMed  Google Scholar 

  43. Addy CL, Gavrila A, Tsiodras S, Brodovicz K, Karchmer AW, Mantzoros CS. Hypoadiponectinemia is associated with insulin resistance, hypertriglyceridemia, and fat redistribution in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy. J Clin Endocrinol Metab. 2003;88(2):627–36.

    Article  CAS  PubMed  Google Scholar 

  44. Cnop M, Havel PJ, Utzschneider KM, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46(4):459–69.

    CAS  PubMed  Google Scholar 

  45. Gavrila A, Chan JL, Yiannakouris N, et al. Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies. J Clin Endocrinol Metab. 2003;88(10):4823–31.

    Article  CAS  PubMed  Google Scholar 

  46. Staiger H, Tschritter O, Machann J, et al. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes Res. 2003;11(3):368–72.

    Article  CAS  PubMed  Google Scholar 

  47. Barnea M, Shamay A, Stark AH, Madar Z. A high-fat diet has a tissue-specific effect on adiponectin and related enzyme expression. Obesity (Silver Spring). 2006;14(12):2145–53.

    Article  CAS  Google Scholar 

  48. Duval C, Thissen U, Keshtkar S, et al.: Adipose tissue dysfunction signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in C57BL/6 mice. Diabetes; 59(12): 3181–91.

  49. Naderali EK, Estadella D, Rocha M, et al. A fat-enriched, glucose-enriched diet markedly attenuates adiponectin mRNA levels in rat epididymal adipose tissue. Clin Sci (Lond). 2003;105(4):403–8.

    Article  CAS  Google Scholar 

  50. Berk ES, Kovera AJ, Boozer CN, Pi-Sunyer FX, Johnson JA, Albu JB. Adiponectin levels during low- and high-fat eucaloric diets in lean and obese women. Obes Res. 2005;13(9):1566–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Masternak MM, Bartke A. PPARs in Calorie Restricted and Genetically Long-Lived Mice. PPAR Res. 2007;2007:28436.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305(5682):390–2.

    Article  CAS  PubMed  Google Scholar 

  53. Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem. 2006;281(52):39915–24.

    Article  CAS  PubMed  Google Scholar 

  54. Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6(6):759–67.

    Article  CAS  PubMed  Google Scholar 

  55. Qiang L, Wang H, Farmer SR. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol Cell Biol. 2007;27(13):4698–707.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994;79(7):1147–56.

    Article  CAS  PubMed  Google Scholar 

  57. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289–312.

    Article  CAS  PubMed  Google Scholar 

  58. Masternak MM, Al-Regaiey K, Bonkowski MS, et al. Divergent effects of caloric restriction on gene expression in normal and long-lived mice. J Gerontol A Biol Sci Med Sci. 2004;59(8):784–8.

    Article  PubMed  Google Scholar 

  59. Masternak MM, Al-Regaiey KA, Del Rosario Lim MM, et al. Effects of caloric restriction and growth hormone resistance on the expression level of peroxisome proliferator-activated receptors superfamily in liver of normal and long-lived growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci. 2005;60(11):1394–8.

    Article  PubMed  Google Scholar 

  60. Hiuge A, Tenenbaum A, Maeda N, et al. Effects of peroxisome proliferator-activated receptor ligands, bezafibrate and fenofibrate, on adiponectin level. Arterioscler Thromb Vasc Biol. 2007;27(3):635–41.

    Article  CAS  PubMed  Google Scholar 

  61. Kim JY, van de Wall E, Laplante M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Kubota N, Yano W, Kubota T, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6(1):55–68.

    Article  CAS  PubMed  Google Scholar 

  63. Kajimura D, Lee HW, Riley KJ, et al.: Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab; 17(6): 901–15.

  64. Civitarese AE, Ukropcova B, Carling S, et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 2006;4(1):75–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Qiao L, Kinney B, Yoo HS, Lee B, Schaack J, Shao J: Adiponectin Increases Skeletal Muscle Mitochondrial Biogenesis by Suppressing Mitogen-Activated Protein Kinase Phosphatase-1. Diabetes.

  66. Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes. 2006;55(9):2562–70.

    Article  CAS  PubMed  Google Scholar 

  67. Amin RH, Mathews ST, Camp HS, Ding L, Leff T: Selective activation of PPARgamma in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-induced insulin resistance. Am J Physiol Endocrinol Metab; 298(1): E28-37.

  68. Delaigle AM, Jonas JC, Bauche IB, Cornu O, Brichard SM. Induction of adiponectin in skeletal muscle by inflammatory cytokines: in vivo and in vitro studies. Endocrinology. 2004;145(12):5589–97.

    Article  CAS  PubMed  Google Scholar 

  69. Krause MP, Liu Y, Vu V, et al. Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function. Am J Physiol - Cell Physiol. 2008;295(1):C203–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947–53.

    Article  CAS  PubMed  Google Scholar 

  71. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.

    Article  CAS  PubMed  Google Scholar 

  72. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95.

    Article  CAS  PubMed  Google Scholar 

  73. Iwabu M, Yamauchi T, Okada-Iwabu M, et al.: Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature; 464(7293): 1313–9.

  74. Rasmussen MS, Lihn AS, Pedersen SB, Bruun JM, Rasmussen M, Richelsen B. Adiponectin receptors in human adipose tissue: effects of obesity, weight loss, and fat depots. Obesity (Silver Spring). 2006;14(1):28–35.

    Article  CAS  Google Scholar 

  75. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9.

    Article  CAS  PubMed  Google Scholar 

  76. Yamauchi T, Nio Y, Maki T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9.

    Article  CAS  PubMed  Google Scholar 

  77. Combs TP, Pajvani UB, Berg AH, et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology. 2004;145(1):367–83.

    Article  CAS  PubMed  Google Scholar 

  78. Qiao L, Kinney B, Schaack J, Shao J: Adiponectin inhibits lipolysis in mouse adipocytes. Diabetes; 60(5): 1519–27.

  79. Wedellova Z, Dietrich J, Siklova-Vitkova M, et al.: Adiponectin inhibits spontaneous and catecholamine-induced lipolysis in human adipocytes of non-obese subjects through AMPK-dependent mechanisms. Physiol Res; 60(1): 139–48.

Download references

Conflict of interest

None of the authors in this manuscript have financial interest or relationship with other parties that inappropriately influence the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, B., Shao, J. Adiponectin and energy homeostasis. Rev Endocr Metab Disord 15, 149–156 (2014). https://doi.org/10.1007/s11154-013-9283-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9283-3

Keywords

Navigation