Skip to main content

Advertisement

Log in

The role of endothelial insulin signaling in the regulation of glucose metabolism

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The skeletal muscle is one of the major target organs of insulin and plays an essential role in insulin-induced glucose uptake. Some evidence indicates that insulin delivery to skeletal muscle interstitium through the endothelial cells is the rate-limiting step in insulin-stimulated glucose uptake. Researchers have also found that this process is impaired by insulin resistance in type 2 diabetes and obesity. A recent study of ours demonstrated that insulin signaling in the endothelial cells plays a pivotal role in the regulation of glucose uptake by the skeletal muscle. Specifically, impaired insulin signaling in the endothelial cells, with reduction of insulin-induced eNOS phosphorylation, causes attenuation of the insulin-induced capillary recruitment and insulin delivery, which, in turn reduces glucose uptake by the skeletal muscle in high-fat diet-fed mice. Moreover, restoration of the insulin-induced eNOS phosphorylation in the endothelial cells completely reverses the reduction in the capillary recruitment and insulin delivery, and as a result, significantly restores glucose uptake by the skeletal muscle. In the present review, we describe the recent progress in research on the physiological and pathophysiological roles of endothelial insulin signaling in the regulation of insulin-induced glucose uptake by the skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus present and future perspectives. Nat Rev Endocrinol. 2011;8:228–36.

    Article  PubMed  CAS  Google Scholar 

  2. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301:2129–40.

    Article  PubMed  CAS  Google Scholar 

  3. Balkau B, Hu G, Qiao Q, Tuomilehto J, Borch-Johnsen K, Pyorala K. Prediction of the risk of cardiovascular mortality using a score that includes glucose as a risk factor: The DECODE Study. Diabetologia. 2004;47:2118–28.

    Article  PubMed  CAS  Google Scholar 

  4. Mazzone T, Chait A, Plutzky J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet. 2008;371:1800–9.

    Article  PubMed  CAS  Google Scholar 

  5. Hogan P, Dall T, Nikolov P. American diabetes association: economic costs of diabetes in the US in 2002. Diabetes Care. 2003;26:917–32.

    Article  PubMed  Google Scholar 

  6. DeFronzo R, Gunnarsson R, Ojorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76:149–55.

    Article  PubMed  CAS  Google Scholar 

  7. Turinsky J, O’Sullivan DM, Bayly BP. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem. 1990;265:16880–5.

    PubMed  CAS  Google Scholar 

  8. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103:253–9.

    Article  PubMed  CAS  Google Scholar 

  9. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51:2005–11.

    Article  PubMed  CAS  Google Scholar 

  10. Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest. 2011;121:1858–70.

    Article  PubMed  CAS  Google Scholar 

  11. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148:852–71.

    Article  PubMed  CAS  Google Scholar 

  12. Long YC, Zierath JR. Influence of AMP-activated protein kinase and calcineurin on metabolic networks in skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295:E545–52.

    Article  CAS  Google Scholar 

  13. Vincent MA, Clerk LH, Rattigan S, Clark MG, Barrett EJ. Active role for the vasculature in the delivery of insulin to skeletal muscle. Clin Exp Pharmacol Physiol. 2005;32:302–7.

    Article  PubMed  CAS  Google Scholar 

  14. Yang YJ, Hope ID, Ader M, Bergman RN. Insulin transport across capillaries is rate limiting for insulin action in dogs. J Clin Invest. 1989;84:1620–8.

    Article  PubMed  CAS  Google Scholar 

  15. Jansson PA, Fowelin JP, von Schenck HP, Smith UP, Lönnroth PN. Measurement by microdialysis of the insulin concentration in subcutaneous interstitial fluid. Importance of the endothelial barrier for insulin. Diabetes. 1993;42:1469–73.

    Article  PubMed  CAS  Google Scholar 

  16. Miles PD, Levisetti M, Reichart D, Khoursheed M, Moossa AR, Olefsky JM. Kinetics of insulin action in vivo. Identification of rate limiting steps. Diabetes. 1995;44:947–53.

    Article  PubMed  CAS  Google Scholar 

  17. Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806.

    Article  PubMed  CAS  Google Scholar 

  18. Nystrom FH, Quon MJ. Insulin signaling: metabolic pathways and mechanisms for specificity. Cell Signal. 1999;11:563–74.

    Article  PubMed  CAS  Google Scholar 

  19. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signaling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85–96.

    Article  PubMed  CAS  Google Scholar 

  20. Boller S, Joblin BA, Xu L, Item F, Trüb T, Boschetti N, et al. From signal transduction to signal interpretation: an alternative model for the molecular function of insulin receptor substrates. Arch Physiol Biochem. 2012;118(3):148–55.

    Article  PubMed  CAS  Google Scholar 

  21. Abe H, Yamada N, Kamata K, Kuwaki T, Shimada M, Osuga J, et al. Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1. J Clin Invest. 1998;101:1784–8.

    Article  PubMed  CAS  Google Scholar 

  22. Kubota T, Kubota N, Moroi M, Terauchi Y, Kobayashi T, Kamata K, et al. Lack of insulin receptor substrate-2 causes progressive neointima formation in response to vessel injury. Circulation. 2003;107:3073–80.

    Article  PubMed  CAS  Google Scholar 

  23. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–5.

    Article  PubMed  CAS  Google Scholar 

  24. Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Mostowski H, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101:1539–45.

    Article  PubMed  CAS  Google Scholar 

  25. Montagnani M, Chen H, Barr VA, Quon MJ. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation byAkt at Ser(1179). J Biol Chem. 2001;276:30392–8.

    Article  PubMed  CAS  Google Scholar 

  26. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physio. 2003;284:R1–12.

    CAS  Google Scholar 

  27. Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3:46–56.

    Article  PubMed  CAS  Google Scholar 

  28. Potenza MA, Marasciulo FL, Chieppa DM, Brigiani GS, Formoso G, Quon MJ, et al. Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol. 2005;289:H813–22.

    CAS  Google Scholar 

  29. Potenza MA, Addabbo F, Montagnani M. Vascular actions of insulin with implications for endothelial dysfunction. Am J Physiol Endocrinol Metab. 2009;297:E568–77.

    Article  PubMed  CAS  Google Scholar 

  30. Kahn CR. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes. 1994;43:1066–84.

    Article  PubMed  CAS  Google Scholar 

  31. Ohkita M, Tawa M, Kitada K, Matsumura Y. Pathophysiological roles of endothelin receptors in cardiovascular diseases. J Pharmacol Sci. 2012;119(4):302–13.

    Article  PubMed  CAS  Google Scholar 

  32. Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–904.

    Article  PubMed  Google Scholar 

  33. Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev. 2001;22:36–52.

    Article  PubMed  CAS  Google Scholar 

  34. Jansson PA. Endothelial dysfunction in insulin resistance and type 2 diabetes. J Intern Med. 2007;262:173–83.

    Article  PubMed  CAS  Google Scholar 

  35. Naruse K, Rask-Madsen C, Takahara N, Ha SW, Suzuma K, Way KJ, et al. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes. 2006;55:691–8.

    Article  PubMed  CAS  Google Scholar 

  36. Jiang ZY, Lin YW, Clemont A, Feener EP, Hein KD, Igarashi M, et al. Characterization of selective resistance to insulin signaling in the vasculature ofobese Zucker (fa/fa) rats. J Clin Invest. 1999;104:447–57.

    Article  PubMed  CAS  Google Scholar 

  37. Gogg S, Smith U, Jansson PA. Increased MAPK activation and impaired insulin signaling in subcutaneous microvascular endothelial cells in type 2 diabetes: the role of endothelin-1. Diabetes. 2009;58:2238–45.

    Article  PubMed  CAS  Google Scholar 

  38. Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011;13:294–307.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang J, Ou J, Bashmakov Y, Horton JD, Brown MS, Goldstein JL. Insulin inhibits transcription of IRS-2 gene in rat liver through an insulin response element (IRE) that resembles IREs of other insulin-repressed genes. Proc Natl Acad Sci USA. 2001;98:3756–61.

    Article  PubMed  CAS  Google Scholar 

  40. Ide T, Shimano H, Yahagi N, Matsuzaka T, Nakakuki M, Yamamoto T, et al. SREBPs suppress IRS-2-mediated insulin signaling in the liver. Nat Cell Biol. 2004;6:351–7.

    Article  PubMed  CAS  Google Scholar 

  41. Sherwin RS, Kramer KJ, Tobin JD, Insel PA, Liljenquist JE, Berman M, et al. A model of the kinetics of insulin in man. J Clin Invest. 1974;53:1481–92.

    Article  PubMed  CAS  Google Scholar 

  42. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:E214–23.

    PubMed  CAS  Google Scholar 

  43. Chiu JD, Richey JM, Harrison LN, Zuniga E, Kolka CM, Kirkman E, et al. Direct administration of insulin into skeletal muscle reveals that the transport of insulin across the capillary endothelium limits the time course of insulin to activate glucose disposal. Diabetes. 2008;57:828–35.

    Article  PubMed  CAS  Google Scholar 

  44. Prager R, Wallace P, Olefsky JM. In vivo kinetics of insulin action on peripheral glucose disposal and hepatic glucose output in normal and obese subjects. J Clin Invest. 1986;78:472–81.

    Article  PubMed  CAS  Google Scholar 

  45. Turk D, Alzaid A, Dinneen S, Nair KS, Rizza R. The effects of non-insulin-dependent diabetes mellitus on the kinetics of onset of insulin action in hepatic and extrahepatic tissues. J Clin Invest. 1995;95:755–62.

    Article  PubMed  CAS  Google Scholar 

  46. Sjöstrand M, Gudbjörnsdottir S, Holmäng A, Lönn L, Strindberg L, Lönnroth P. Delayed transcapillary transport of insulin to muscle interstitial fluid in obese subjects. Diabetes. 2002;51:2742–8.

    Article  PubMed  Google Scholar 

  47. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100:158–73.

    Article  PubMed  CAS  Google Scholar 

  48. King GL, Johnson SM. Receptor-mediated transport of insulin across endothelial cells. Science. 1985;227:1583–6.

    Article  PubMed  CAS  Google Scholar 

  49. Dernovsek KD, Bar RS. Processing of cell-bound insulin by capillary and macrovascular endothelial cells in culture. Am J Physiol. 1985;248:E244–51.

    PubMed  CAS  Google Scholar 

  50. Schnitzer JE, Oh P, Pinney E, Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol. 1994;127:1217–32.

    Article  PubMed  CAS  Google Scholar 

  51. Steil GM, Ader M, Moore DM, Rebrin K, Bergman RN. Transendothelial insulin transport is not saturable in vivo. No evidence for a receptor-mediated process. J Clin Invest. 1996;97:1497–503.

    Article  PubMed  CAS  Google Scholar 

  52. Hamilton-Wessler M, Ader M, Dea MK, Moore D, Loftager M, Markussen J, et al. Mode of transcapillary transport of insulin and insulin analog NN304in dog hindlimb: evidence for passive diffusion. Diabetes. 2002;51:574–82.

    Article  PubMed  CAS  Google Scholar 

  53. Majumdar S, Genders AJ, Inyard AC, Frison V, Barrett EJ. Insulin entry into muscle involves a saturable process in the vascular endothelium. Diabetologia. 2012;55:450–6.

    Article  PubMed  CAS  Google Scholar 

  54. Barrett EJ, Wang H, Upchurch CT, Liu Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am J Physiol Endocrinol Metab. 2011;30:E252–63.

    Article  CAS  Google Scholar 

  55. Wang H, Liu Z, Li G, Barrett EJ. The vascular endothelial cell mediates insulin transport into skeletal muscle. Am J Physiol Endocrinol Metab. 2006;291:E323–32.

    Article  PubMed  CAS  Google Scholar 

  56. Wang H, Wang AX, Barrett EJ. Caveolin-1 is required for vascular endothelial insulin uptake. Am J Physiol Endocrinol Metab. 2011;300:E134–44.

    Article  PubMed  CAS  Google Scholar 

  57. Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, et al. Microvascular hyperpermeability in caveolin-1 (−/−) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem. 2002;277:40091–8.

    Article  PubMed  CAS  Google Scholar 

  58. Rattigan S, Clark MG, Barrett EJ. Hemodynamic actions of insulin in rat skeletal muscle: evidence for capillary recruitment. Diabetes. 1997;46:1381–8.

    Article  PubMed  CAS  Google Scholar 

  59. Parks DA, Granger DN. Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl. 1986;548:87–99.

    PubMed  CAS  Google Scholar 

  60. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97:473–83.

    Article  PubMed  CAS  Google Scholar 

  61. Clark MG. Impaired microvascular perfusion: a consequence of vascular dysfunction and a potential cause of insulin resistance in muscle. Am J Physiol Endocrinol Metab. 2008;295:E732–50.

    Article  PubMed  CAS  Google Scholar 

  62. Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52:752–64.

    Article  PubMed  CAS  Google Scholar 

  63. Vincent MA, Dawson D, Clark AD, Lindner JR, Rattigan S, Clark MG, et al. Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes. 2002;51:42–8.

    Article  PubMed  CAS  Google Scholar 

  64. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104:342–5.

    Article  PubMed  CAS  Google Scholar 

  65. Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S. Inhibiting NOS blocks microvascular recruitment and blunts glucose uptake in response to insulin. Am J Physiol Endocrinol Metab. 2003;285:E123–9.

    PubMed  CAS  Google Scholar 

  66. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest. 1994;94:2511–5.

    Article  PubMed  CAS  Google Scholar 

  67. Andreozzi F, Laratta E, Procopio C, Hribal ML, Sciacqua A, Perticone M, et al. Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol Cell Biol. 2007;27:2372–83.

    Article  PubMed  CAS  Google Scholar 

  68. Federici M, Pandolfi A, De Filippis EA, Pellegrini G, Menghini R, Lauro D, et al. G972RIRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells. Circulation. 2004;109:399–405.

    Article  PubMed  CAS  Google Scholar 

  69. Kainoh M, Maruyama I, Nishio S, Nakadate T. Enhancement by beraprost sodium, a stable analogue of prostacyclin, in thrombomodulin expression on membrane surface of cultured vascular endothelial cells via increase in cyclic AMP level. Biochem Pharmacol. 1991;41:1135–40.

    Article  PubMed  CAS  Google Scholar 

  70. Niwano K, Arai M, Tomaru K, Uchiyama T, Ohyama Y, Kurabayashi M. Transcriptional stimulation of the eNOS gene by the stable prostacyclin analogue beraprost is mediated through cAMP-responsive element in vascular endothelial cells: close link between PGI2 signal and NO pathways. Circ Res. 2003;93:523–30.

    Article  PubMed  CAS  Google Scholar 

  71. Lièvre M, Morand S, Besse B, Fiessinger J, Boissel J. Oral Beraprost sodium, a prostaglandin I2 analogue, for intermittent claudication: a double-blind, randomized, multicenter controlled trial. Beraprostet Claudication Intermittente (BERCI) Research Group. Circulation. 2000;102:426–31.

    Article  PubMed  Google Scholar 

  72. Galiè N, Humbert M, Vachiéry JL, Vizza CD, Kneussl M, Manes A, et al. Arterial Pulmonary Hypertension and Beraprost European (ALPHABET) study group effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2002;39:1496–502.

    Article  PubMed  Google Scholar 

  73. Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5:262–9.

    Article  PubMed  CAS  Google Scholar 

  74. Richter G, Feddersen O, Wagner U, Barth P, Göke R, Göke B. GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol. 1993;265:L374–81.

    PubMed  CAS  Google Scholar 

  75. Nyström T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahrén B, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287:E1209–15.

    Article  PubMed  CAS  Google Scholar 

  76. Erdogdu O, Nathanson D, Sjöholm A, Nyström T, Zhang Q. Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor. Mol Cell Endocrinol. 2010;325:26–35.

    Article  PubMed  CAS  Google Scholar 

  77. Chai W, Dong Z, Wang N, Wang W, Tao L, Cao W, et al. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes. 2012;61:888–96.

    Article  PubMed  CAS  Google Scholar 

  78. Clerk LH, Rattigan S, Clark MG. Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes. 2002;51:1138–45.

    Article  PubMed  CAS  Google Scholar 

  79. Youd JM, Rattigan S, Clark MG. Acute impairment of insulin-mediated capillary recruitment and glucose uptake in rat skeletal muscle in vivo by TNF-alpha. Diabetes. 2000;49:1904–9.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang L, Wheatley CM, Richards SM, Barrett EJ, Clark MG, Rattigan S. TNF-alpha acutely inhibits vascular effects of physiological but not high insulin or contraction. Am J Physiol Endocrinol Metab. 2003;285:E654–60.

    PubMed  CAS  Google Scholar 

  81. Wallis MG, Smith ME, Kolka CM, Zhang L, Richards SM, Rattigan S, et al. Acute glucosamine-induced insulin resistance in muscle in vivo is associated with impaired capillary recruitment. Diabetologia. 2005;48:2131–9.

    Article  PubMed  CAS  Google Scholar 

  82. Wallis MG, Wheatley CM, Rattigan S, Barrett EJ, Clark AD, Clark MG. Insulin-mediated hemodynamic changes are impaired in muscle of zucker obese rats. Diabetes. 2002;51:3492–8.

    Article  PubMed  CAS  Google Scholar 

  83. Jaap AJ, Hammersley MS, Shore AC, Tooke JE. Reduced microvascular hyperaemia in subjects at risk of developing type 2(non-insulin-dependent) diabetes mellitus. Diabetologia. 1994;37:214–6.

    Article  PubMed  CAS  Google Scholar 

  84. Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2diabetes. Diabetes. 1999;48:1856–62.

    Article  PubMed  CAS  Google Scholar 

  85. Serné EH, de Jongh RT, Eringa EC, Ijzerman RG, de Boer MP, Stehouwer CD. Microvascular dysfunction: causative role in the association between hypertension, insulin resistance and the metabolic syndrome. Essays Biochem. 2006;42:163–76.

    Article  PubMed  Google Scholar 

  86. Gudbjörnsdóttir S, Sjöstrand M, Strindberg L, Lönnroth P. Decreased muscle capillary permeability surface area in type 2diabetic subjects. J Clin Endocrinol Metab. 2005;90:1078–82.

    Article  PubMed  CAS  Google Scholar 

  87. Daugan A, Grondin P, Ruault C, de Gouville AC LM, Coste H, Linget JM, et al. The discovery of tadalafil: a novel and highly selective PDE5 inhibitor. 1: 5,6,11,11a-tetrahydro-1H-imidazo[1',5':1,6]pyrido[3,4-b]indole-1,3(2H)-dione analogues. J Med Chem. 2003;46:4525–32.

    Article  PubMed  CAS  Google Scholar 

  88. Jansson PA, Murdolo G, Sjögren L, Nyström B, Sjöstrand M, Strindberg L, et al. Tadalafil increases muscle capillary recruitment and forearm glucose uptake in women with type 2 diabetes. Diabetologia. 2010;53:2205–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant for TSBMI from the Ministry of Education, Culture, Sports, Science and Technology in Japan; a Grant-in-Aid for Scientific Research in Priority Areas (A) (16209030), (A) (18209033), and (S) (20229008) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to T. Kadowaki); and a Grant-in-Aid for Scientific Research in Priority Areas (C) (19591037) and (B) (21390279) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to N.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naoto Kubota or Takashi Kadowaki.

Additional information

Tetsuya Kubota and Naoto Kubota contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, T., Kubota, N. & Kadowaki, T. The role of endothelial insulin signaling in the regulation of glucose metabolism. Rev Endocr Metab Disord 14, 207–216 (2013). https://doi.org/10.1007/s11154-013-9242-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9242-z

Keywords

Navigation