Skip to main content
Log in

Cu and/or Ni catalysts over CePr oxide for the water gas shift reaction: an experimental study, kinetic fitting and reactor simulation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Several Cu and Ni samples, supported over Pr-promoted ceria, were characterized and tested as water gas shift (WGS) catalysts in the temperature range 250–450 °C. Three metal loadings were studied, 5, 10 and 20 wt%. Redox (TPR) and textural (XRD and BET) properties were correlated with the observed catalytic behavior. The activity clearly increased with metal loading (Cu or Ni) from 5 to 10 wt%, but no major changes were observed between mid and high metal loading samples, 10 and 20 wt%. This might be due to appreciable metal segregation over support surface as Cu or Ni content increases. For Ni-containing samples, CH4 was found at the reactor outlet stream, showing that CO methanation also takes place. For 10 wt% total metal content, kinetic expressions for monometallic Cu and Ni catalysts, and a bimetallic CuNi were proposed and fitted simultaneously for both WGS and the CO methanation reaction. Then, the kinetic expressions were used to model a reactor scheme where the main goal was the minimization of the required catalyst mass for a given CO conversion. It can be concluded that the most promissory scheme consists of two reactors, the first operating with the CuNi catalyst at high temperature and the second with the Cu catalyst at a lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zalc M, Löffler D (2002) Fuel processing for PEM fuel cells: transport and kinetic issues of system design. J Power Sour 111:58–64

    Article  CAS  Google Scholar 

  2. Amadeo N, Laborde M (1995) Hydrogen production from the low-temperature water–gas shift reaction: kinetics, and simulation of the industrial reactor. Int J Hydrog Energy 20:949–956

    Article  CAS  Google Scholar 

  3. Ratnasamy C, Wagner J (2009) Water gas shift catalysis. Catal Rev 51:325–440

    Article  CAS  Google Scholar 

  4. Panagiotopoulou P, Papavasiliou B, Avgouropoulos J, Ionnides G, Kondarides T (2007) Water gas shift activities of doped Pt-CeO2 catalysts. Chem Eng J 134:16–22

    Article  CAS  Google Scholar 

  5. Tiwari R, Sarkara B, Tiwari R, Pendem C, Sasaki T, Saran S, Bal R (2014) Pt nanoparticles with tuneable size supported on nanocrystallineceria for the low temperature water–gas-shift (WGS) reaction. J Mol Catal 395:117–123

    Article  CAS  Google Scholar 

  6. Reina T, Ivanova S, Centeno M, Odriozola J (2015) Boosting the activity of a Au/CeO2/Al2O3catalyst for the WGS reaction. Catal Today 253:149–154

    Article  CAS  Google Scholar 

  7. El-Moemen A, Karpenko A, Denkwitz Y, Behm R (2009) Activity, stability and deactivation behavior of Au/CeO2 catalysts in the water gas shift reaction at increased reaction temperature (300 °C). J Power Sourc 190:64–75

    Article  Google Scholar 

  8. Mendes D, Garcia H, Silva V, Mendes A, Madeira M (2009) Comparison of nanosized gold-based and copper-based catalysts for the low-temperature water–gas shift reaction. Ind Chem Res. 48:430–439

    Article  CAS  Google Scholar 

  9. Jacobs G, Chenu E, Patterson P, Williams L, Sparks D, Thomas G, Davis B (2004) Water–gas shift: comparative screening of metal promoters for metal/ceria systems and role of the metal. Appl Catal A Gen 258:203–214

    Article  CAS  Google Scholar 

  10. Bunluesin T, Gorte R, Graham G (1998) Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B Environ 15:107–114

    Article  CAS  Google Scholar 

  11. Qi X, Flytzani-Stephanopoulos M (2004) Activity and stability of Cu-CeO2 catalysts in high-temperature water–gas shift for fuel-cell applications. Ind Eng Chem Res 43:3055–3062

    Article  CAS  Google Scholar 

  12. Gunawardana P, Lee H, Kim D (2009) Performance of copper–ceria catalysts for water gas shift reaction in medium temperature range. Int J Hydrog Energy 34:1336–1341

    Article  CAS  Google Scholar 

  13. Reddy B, Thrimurthulu G, Katta L, Yamada Y, Park S (2009) Structural characteristics and catalytic activity of nanocrystalline ceria-praseodymia solid solutions. J Phys Chem C 113:15882–15890

    Article  CAS  Google Scholar 

  14. Borchert H, Frolova Y, Kaichev V, Prosvirin I, Sadykov V (2005) Electronic and chemical properties of nanostructured cerium dioxide doped with praseodymium. J Phys Chem C 109:5728–5738

    Article  CAS  Google Scholar 

  15. Poggio-Fraccari E, Mariño F, Laborde M, Baronetti G (2013) Copper and nickel catalysts supported on praseodymium-doped ceria (PDC) for the water–gas shift reaction. Appl Catal A Gen 460:15–20

    Article  Google Scholar 

  16. Li Y, Qi F, Flytzani-Stephanopoulos M (2002) Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl Catal B Environ 27:179–191

    Article  Google Scholar 

  17. Wheeler C, Jhalani A, Klein E, Tummala S, Schmidt L (2004) The water–gas-shift reaction at short contact times. J Catal 223:191–199

    Article  CAS  Google Scholar 

  18. Poggio-Fraccari E, Irigoyen B, Baronetti G, Mariño F (2014) Ce-Pr mixed oxides as active supports for water–gas shift reaction: experimental and density functional theory characterization. Appl Catal A Gen 485:123–132

    Article  CAS  Google Scholar 

  19. Giunta P, Moreno M, Mariño F, Amadeo N, Laborde M (2012) COPROX fixed bed reactor temperature control schemes. Chem Eng J 35:1055–1063

    CAS  Google Scholar 

  20. Jeifetz L, Giunta P, Mariño F, Amadeo N, Laborde M (2014) Simulation of CO preferential oxidation (COPrOx) monolithic reactors. Int J Chem React Eng 12:1–12

    CAS  Google Scholar 

  21. Colón G, Pijolat M, Valdivieso F, Vidal H, Kaspar J, Finocchio E (1998) Surface and structural characterization of CexZr1–xO2 CEZIRENCAT mixed oxides as potential three-way catalyst promoters. J Chem Soc Faraday Trans 94:3717–3726

    Article  Google Scholar 

  22. Jobbágy M, Mariño F, Schönbrod B, Baronetti G, Laborde M (2006) Synthesis of copper-promoted CeO2 catalysts. Chem Mater 18:1945–1950

    Article  Google Scholar 

  23. Rico-Pérez V, Aneggi E, Bueno-López A, Trovarelli A (2016) Synergic effect of Cu/Ce0.5Pr0.5O2–x and Ce0.5Pr0.5O2–x in soot combustion. Appl Catal B Environ. 197:95–104

    Article  Google Scholar 

  24. Moreira M, Ribeiro A, Cunha A, Rodrigues A, Zabilsky M, Djinovic P, Pintar A (2016) Copper based materials for water-gas shift equilibrium displacement. Appl Catal B Environ 189:199–209

    Article  CAS  Google Scholar 

  25. Caputo T, Lisi L, Pirone R, Russo G (2008) On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H2-rich gases. Appl Catal A Gen 328:42–53

    Article  Google Scholar 

  26. Luo M, Zhong Y, Yuan X, Zheng X (1997) TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation. Appl Catal A Gen 162:121–131

    Article  CAS  Google Scholar 

  27. Rao G, Sahu H, Mishra B (2003) Surface and catalytic properties of Cu–Ce–O composite oxides prepared by combustion method. Coll Surf A 220:261–269

    Article  CAS  Google Scholar 

  28. Du X, Zhang D, Shi L, Gao R, Zhang J (2004) Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J Phys Chem C 116:10009–10016

    Article  Google Scholar 

  29. Chary K, Rao P, Vishwanathan V (2006) Synthesis and high performance of ceria supported nickel catalysts for hydrodechlorination reaction. Catal Commun 7:974–978

    Article  CAS  Google Scholar 

  30. Liu W, Flitzany-Stephanopoulos M (1995) Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalyst. J Catal 153:317–332

    Article  CAS  Google Scholar 

  31. Fatsikostas A, Verykios X (2004) Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal 225:439–452

    Article  CAS  Google Scholar 

  32. Huang T, Yu T, Jhao S (2006) Weighting variation of water–gas shift in steam reforming of methane over supported Ni and Ni–Cu catalysts. Ind Eng Chem Res 45:150–156

    Article  CAS  Google Scholar 

  33. Zyryanova M, Snytnikov P, Amosov Y, Kuzmin V, Kirillov V, Sobyanin V (2001) Design, scale-out, and operation of a preferential CO methanation reactor with a nickel ceria catalyst. Chem Eng J 176:106–113

    Google Scholar 

  34. Lin J, Biswas P, Guliants V, Misture S (2010) Hydrogen production by water–gas shift reaction over bimetallic Cu–Ni catalysts supported on La-doped mesoporous ceria. Appl Catal A Gen 387:87–94

    Article  CAS  Google Scholar 

  35. Shinde V, Madras G (2002) Water gas shift reaction over multi-component ceria catalysts. Appl Catal B Environ 123:367–378

    Google Scholar 

  36. Koryabkina N, Phatak A, Ruettinger W, Farrauto R, Ribeiro F (2003) Determination of kinetic parameters for the water–gas shift reaction on copper catalysts under realistic conditions for fuel cell applications. J Catal 217:233–239

    CAS  Google Scholar 

  37. Zerva C, Philippopoulos C (2006) Ceria catalysts for water gas shift reaction: influence of preparation method on their activity. Appl Catal B Environ 67:105–112

    Article  CAS  Google Scholar 

  38. Si R, Raitano J, Yia N, Zhang L, Chan S, Flytzani-Stephanopoulos M (2012) Structure sensitivity of the low-temperature water–gas shift reaction on Cu–CeO2 catalysts. Catal Today 180:68–80

    Article  CAS  Google Scholar 

  39. Strogatz S (1994) Nonlinear dynamics and chaos, 1st edn. Addison-Wesley Reading, Boston

    Google Scholar 

  40. Prigogine I (1961) Introduction to thermodynamics of irreversible processes, 2nd edn. Wiley, New York

    Google Scholar 

  41. de Groot S, Mazur P (1985) Non-equilibrium thermodynamics, 2nd edn. Dover Publications Inc., New York

    Google Scholar 

Download references

Funding

This work was supported by University of Buenos Aires (UBA), CONICET and MINCyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Poggio-Fraccari.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poggio-Fraccari, E., Giunta, P., Baronetti, G. et al. Cu and/or Ni catalysts over CePr oxide for the water gas shift reaction: an experimental study, kinetic fitting and reactor simulation. Reac Kinet Mech Cat 121, 607–628 (2017). https://doi.org/10.1007/s11144-017-1166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1166-2

Keywords

Navigation