Skip to main content
Log in

Effect of aging on the CO oxidation properties of copper manganese oxides prepared by hydrolysis–coprecipitation using tetramethyl ammonium hydroxide

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Copper manganese mixed oxides were prepared by a hydrolysis-coprecipitation method using tetramethyl ammonium hydroxide and calcined at 573–873 K. The effect of aging treatment after the coprecipitation process on the catalytic properties of the calcined mixed oxides for CO oxidation was investigated. XRD and EXAFS studies showed that spinel phases were mainly formed in the aged catalysts and the degree of disorder in the Cu–Mn spinel oxide phases increased. The aging treatment suppressed the formation of crystallites of mixed oxides, but the treatment promoted the crystallization of impurity CuO phase. The aged catalyst exhibited higher activity for CO oxidation than the unaged catalysts. The optimum calcination temperature for obtaining the highest activity was changed by aging treatment. Refluxing during the aging treatment led to the detrimental effect on the CO oxidation activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zafiris GS, Gorte RJ (1993) J Catal 140:418

    Article  CAS  Google Scholar 

  2. Chen H, Tong X, Li Y (2009) Appl Catal A 370:59

    Article  CAS  Google Scholar 

  3. Li WB, Chu WB, Zhuang M, Hua J (2004) Catal Today 93–95:205

    Article  Google Scholar 

  4. Morales MR, Barbero BP, Cadús LE (2008) Fuel 87:1177

    Article  CAS  Google Scholar 

  5. Njagi EC, Genuino HC, King’ondu CK, Dharmarathna S, Suib SL (2012) Appl Catal A 421–422:154

    Article  Google Scholar 

  6. Kondrat SA, Davies TE, Zu Z, Boldrin P, Bartley JK, Carley AF, Taylor SH, Rosseinsky MJ, Hutchings GJ (2011) J Catal 281:279

    Article  CAS  Google Scholar 

  7. Mirzaei AA, Shaterian HR, Joyner RW, Stockenhuber M, Taylor SH, Hutchings GJ (2003) Catal Commun 4:17

    Article  CAS  Google Scholar 

  8. Clarke TJ, Davies TE, Kondart SA, Taylor SH (2015) Appl Catal B 165:222

    Article  CAS  Google Scholar 

  9. Njagi EC, Genuino HC, King’ondu CK, Chen C-H, Horvath D, Suib SL (2011) Int J Hydrog Energy 36:6768

    Article  CAS  Google Scholar 

  10. Cai L-N, Guo Y, Lu A-H, Branton P, Li WC (2012) J Mol Catal A 360:35

    Article  CAS  Google Scholar 

  11. Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T (2009) Appl Catal B 89:420

    Article  CAS  Google Scholar 

  12. Rogers TH, Piggot CS, Bahlke WH, Jennings JM (1921) J Am Chem Soc 43:1973

    Article  CAS  Google Scholar 

  13. Veprek S, Cocke DL, Kehl S, Oswald HR (1986) J Catal 100:250

    Article  CAS  Google Scholar 

  14. Porta P, Moretti G, Jacono ML, Musicanti M, Nardella A (1991) J Mater Chem 1:129

    Article  CAS  Google Scholar 

  15. Tang Z-R, Jones CD, Aldridge JKW, Davies TE, Bartley JK, Carley AF, Taylor SH, Allix M, Dickinson C, Rosseinsky MJ, Claridge JB, Xu Z, Crudace MJ, Hutchings GJ (2009) Chem Cat Chem 1:247

    CAS  Google Scholar 

  16. Hosseini SA, Niaei A, Salari D, Alvarez-Galvan MC, Fierro JLG (2014) Ceram Int 40:6157

    Article  CAS  Google Scholar 

  17. Njagi EC, Chen C-H, Genuino H, Galindo H, Huang H, Suib SL (2010) Appl Catal B 99:103

    Article  CAS  Google Scholar 

  18. Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1996) Catal Lett 42:21

    Article  CAS  Google Scholar 

  19. Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1998) Appl Catal A 166:143

    Article  CAS  Google Scholar 

  20. Jones C, Cole KJ, Taylor SH, Crudace MJ, Hutchings GJ (2009) J Mol Catal A 305:121

    Article  CAS  Google Scholar 

  21. Porta P, Moretti G, Musicanti M, Nardella A (1993) Solid State Ion 63–65:257

    Article  Google Scholar 

  22. Einaga H, Kiya A, Yoshioka S, Teraoka Y (2014) Catal Sci Technol 4:3713

    Article  CAS  Google Scholar 

  23. Koningsberger DC (1993) Jpn J Appl Phys Suppl 32–2:8

    Google Scholar 

  24. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565

    Article  CAS  Google Scholar 

  25. Ressler T, Brock SL, Wong J, Suib SL (1993) J Phys Chem B 103:6407

    Article  Google Scholar 

  26. Ressler T, Wong J, Roots J, Smith IL (2000) Environ Sci Technol 34:950

    Article  CAS  Google Scholar 

  27. Pauly N, Tougaard S, Yubero F (2014) Surf Sci 620:17

    Article  CAS  Google Scholar 

  28. Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA (1988) Phys Rev B 38:11322

    Article  CAS  Google Scholar 

  29. Svintsitskiy DA, Chupakhin AP, Slavinskaya EM, Stonkus OA, Stadnichenko AI, Koscheev SV, Boronin AI (2013) J Mol Catal A: Chem 368:95

    Article  Google Scholar 

  30. Chuah GK, Jaenicke S, Cheong SA, Chan KS (1996) Appl Catal A 145:267–284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by New Energy and Industrial Technology Development Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisahiro Einaga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Einaga, H., Kiya, A. Effect of aging on the CO oxidation properties of copper manganese oxides prepared by hydrolysis–coprecipitation using tetramethyl ammonium hydroxide. Reac Kinet Mech Cat 117, 521–536 (2016). https://doi.org/10.1007/s11144-016-0974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-0974-0

Keywords

Navigation