Skip to main content
Log in

Photocatalytic reduction of CO2 into methanol over CuFe2O4/TiO2 under visible light irradiation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present study aims to focus the photocatalytic reduction of carbon dioxide (CO2) into methanol on TiO2 loaded copper ferrite (CuFe2O4) photocatalyst under visible light (500 W xenon lamp) irradiation. In this perspective, CuFe2O4 and CuFe2O4/TiO2 photocatalysts were synthesized following the sol–gel method from copper(II) nitrate, Cu(NO3)2·3H2O (99 %) and iron(III) nitrate, Fe(NO3)3·9H2O (99 %) as precursors. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), absorption spectrum by ultraviolet–visible spectroscopy (UV–Vis), electron–hole (e/h+) recombination process by photoluminescence spectrophotometer, and elemental compositions by energy dispersive X-ray spectroscopy (EDX) instruments. The loading of TiO2 on CuFe2O4 enhanced the photocatalytic activity in the visible light range. The enhanced photoactivity in CuFe2O4/TiO2 semiconductor catalyst can be attributed to interfacial transfer of photogenerated charges, which led to effective charge separation and inhibited the recombination of photogenerated electron–hole (e/h+) pairs. Methanol was observed as the main product over CuFe2O4/TiO2 and the photocatalytic activity of CuFe2O4/TiO2 for CO2 reduction was found to be about three times higher (651 μmol/gcat L) than that of CuFe2O4 photocatalyst which might be due to the modification of band gap through TiO2 loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kezzim A, Nasrallah N, Abdi A, Trari M (2011) Visible light induced hydrogen on the novel hetero-system CuFe2O4/TiO2. Energy Convers Manag 52:2800–2806

    Article  CAS  Google Scholar 

  2. Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186

    Article  CAS  Google Scholar 

  3. Li Z, Xiao G, Yang Q, Xiao Y, Zhong C (2014) Computational exploration of metal–organic frameworks for CO2/CH4 separation via temperature swing adsorption. Chem Eng Sci 120:59–66

    Article  CAS  Google Scholar 

  4. Harkin T, Hoadley A, Hooper B (2012) Optimisation of power stations with carbon capture plants: the trade-off between costs and net power. J Clean Prod 34:98–109

    Article  CAS  Google Scholar 

  5. Ahouari H, Soualah A, Le Valant A, Pinard L, Magnoux P, Pouilloux Y (2013) Methanol synthesis from CO2 hydrogenation over copper based catalysts. Reac Kinet Mech Cat 110:131–145

    Article  CAS  Google Scholar 

  6. Mao J, Peng T, Zhang X, Li K, Zan L (2012) Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catal Commun 28:38–41

    Article  CAS  Google Scholar 

  7. Tahir M, Amin NS (2013) Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Convers Manag 76:194–214

    Article  CAS  Google Scholar 

  8. Yang H, Yan J, Lu Z, Cheng X, Tang Y (2009) Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. J Alloys Compd 476:715–719

    Article  CAS  Google Scholar 

  9. Liu W, Lim JY, Saucedo MA, Hayhurst AN, Scott SA, Dennis JS (2014) Kinetics of the reduction of wüstite by hydrogen and carbon monoxide for the chemical looping production of hydrogen. Chem Eng Sci 120:149–166

    Article  CAS  Google Scholar 

  10. Li X, Chen J, Li H (2011) Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation. J Nat Gas Chem 20:413–417

    Article  CAS  Google Scholar 

  11. Di Paola A, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 Photocatalyst. Cat 3:36–73

    Google Scholar 

  12. Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211:3–29

    Article  Google Scholar 

  13. Ahmed N, Morikawa M, Izumi Y (2012) Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts. Catal Today 185:263–269

    Article  CAS  Google Scholar 

  14. Wang W-N, Soulis J, Yang YJ, Biswas P (2014) Comparison of CO2 photoreduction systems: a review. Aerosol Air Qual Res 14:533–549

    CAS  Google Scholar 

  15. Di Paola A, García-López E, Marcí (2004) Surface characterisation of metal ions loaded TiO2 photocatalysts: structure–activity relationship. Appl Catal B 48:223–233

    Article  Google Scholar 

  16. Chun H, Yuchao T, Hongxiao T (2004) Characterization and photocatalytic activity of transition-metal-supported surface bond-conjugated TiO2/SiO2. Catal Today 90:325–330

    Article  Google Scholar 

  17. Ding W, Li W (2015) A first principles study of the energetics and core level shifts of anion-doped TiO2 photocatalysts. Chin J Catal 36:181–187

    Article  CAS  Google Scholar 

  18. Hu X, Shi Y, Zhu B, Zhang S, Huang W (2015) Highly photostable palladium-loaded TiO2 nanotubes and the active species in the photodegradation of methyl orange. Chin J Catal 36:221–228

    Article  CAS  Google Scholar 

  19. Dalida MLP, Amer KMS, Su C-C, Lu M-C (2014) Photocatalytic degradation of acetaminophen in modified TiO2 under visible irradiation. Environ Pollut R 21:1208–1216

    Article  CAS  Google Scholar 

  20. Krishnan V, Selvan RK, Augustin CO, Gedanken A, Bertagnolli H (2007) EXAFS and XANES investigations of CuFe2O4 nanoparticles and CuFe2O4-MO2 (M = Sn, Ce) nanocomposites. J Phys Chem C 111:16724–16733

    Article  CAS  Google Scholar 

  21. Tasca JE, Ponzinibbio A, Diaz G, Bravo RD, Lavat A, González MG (2010) CuFe2O4 nanoparticles: a magnetically recoverable catalyst for selective deacetylation of carbohydrate derivatives. Top Catal 53:1087–1090

    Article  CAS  Google Scholar 

  22. De_Richter RK, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sust Energy Rev 19:82–106

    Article  CAS  Google Scholar 

  23. Cho IS, Logar M, Lee CH, Cai L, Prinz FB, Zheng X (2014) Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. Nano Lett 14:24–31

    Article  CAS  Google Scholar 

  24. White BS, Ho TC (2014) A computationally simple technique for analyzing catalyst inhibition dynamics involving multiple competing inhibitors. Chem Eng Sci 120:143–148

    Article  CAS  Google Scholar 

  25. Yan J, Yang H, Tang Y (2009) Synthesis and photocatalytic activity of CuYyFe2–yO4–CuCo2O4 nanocomposites for H2 evolution under visible light irradiation. Renew Energy 34:2399–2403

    Article  CAS  Google Scholar 

  26. Lemine O (2009) Microstructural characterisation of nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR. Superlattices Microstruct 45:576–582

    Article  CAS  Google Scholar 

  27. Huang L, Peng F, Wang H, Yu H, Li Z (2009) Preparation and characterization of Cu2O/TiO2 nano–nano heterostructure photocatalysts. Catal Commun 10:1839–1843

    Article  CAS  Google Scholar 

  28. Li X, Liu H, Luo D (2012) Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem Eng J 180:151–158

    Article  CAS  Google Scholar 

  29. Tahir M, Amin NS (2015) Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl Catal B 162:98–109

    Article  CAS  Google Scholar 

  30. Kočí K, Matějů K, Obalová L (2010) Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl Catal B 96:239–244

    Article  Google Scholar 

  31. Abou Asi M, He C, Su M (2011) Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catal Today 175:256–263

    Article  CAS  Google Scholar 

  32. Li Z, Xu P, Xue L (2010) Preparation and photocatalytic reduction properties of visible light-driven spinel nano-particles. Ind Cat 6:038

    Google Scholar 

  33. Limei X, Fenghua Z, Bin C, Xuefeng B (2011) Preparation of light-driven spinel nanoparticles CoAl2O4, MgFe2O4 and CoFe2O4 and their photocatalytic reduction of carbon dioxide. In: Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), International Conference on: IEEE, pp 2153–2156

  34. Liu L (2014) Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review. Aerosol Air Qual Res 14:453–469

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Malaysian Ministry of Education for Fundamental Research Grant Scheme (RDU120112) and Universiti Malaysia Pahang for funding (GRS140330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksudur R. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.R., Khan, M.R., Rahman, M.W. et al. Photocatalytic reduction of CO2 into methanol over CuFe2O4/TiO2 under visible light irradiation. Reac Kinet Mech Cat 116, 589–604 (2015). https://doi.org/10.1007/s11144-015-0911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0911-7

Keywords

Navigation