Skip to main content
Log in

Catalytic hydrodenitrogenation of propionitrile over supported nickel phosphide catalysts as a model reaction for the transformation of pyrolysis oil obtained from animal by-products

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic hydroconversion of propionitrile (PN) was studied over supported nickel and nickel phosphide catalysts. PN was used as a model compound of aliphatic nitriles in pyrolysis oil obtained from animal by-products. Silica gel and Laponite were used as supports. The structure and particle size of the supported active phase was characterized by X-ray diffractometry and transmission electron microscopy. Catalytic experiments were carried out using a flow-through tube reactor at temperatures between 200 and 400 °C, total pressure of 30 bar, and H2/PN molar ratio of 10. High-pressure operando diffuse reflectance infrared Fourier transform spectroscopy experiments were carried out to study the species on the catalyst surface during reaction. The results substantiated that propane-1-imine (PI) is a surface intermediate of propylamine, dipropylamine and tripropylamine formation. The conversion of PN to hydrocarbon and ammonia hardly proceeded below 300 °C but became dominating reaction between 350 and 400 °C. Brønsted acid sites were not required for the reactions. Supported Ni2P catalysts catalyzed hydrogenolysis of C–N bonds only, whereas also the C–C bonds suffered significant cleavage over supported Ni catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bulushev DA, Ross JRH (2011) Catal Today 171:1–13

    Article  CAS  Google Scholar 

  2. Cascarosa E, Gea G, Arauzo J (2012) Renew Sustain Energy Rev 16:942–957

    Article  CAS  Google Scholar 

  3. Ayllón M, Aznar M, Sánchez JL, Gea G, Arauzo J (2006) Chem Eng J 121:85–96

    Article  Google Scholar 

  4. Cascarosa E, Fonts I, Mesa JM, Sánchez JL, Arauzo J (2011) Fuel Process Technol 92:1954–1962

    Article  CAS  Google Scholar 

  5. Furimsky E, Massoth FE (2005) Catal Rev 47:297–489

    Article  CAS  Google Scholar 

  6. Oyama ST, Wang X, Lee Y-K, Bando K, Requejo FG (2002) J Catal 210:207–217

    Article  CAS  Google Scholar 

  7. Gott T, Oyama ST (2009) J Catal 263:359–371

    Article  CAS  Google Scholar 

  8. Oyama ST (2003) J Catal 216:343–352

    Article  CAS  Google Scholar 

  9. Zuzaniuk V, Prins R (2003) J Catal 219:85–96

    Article  CAS  Google Scholar 

  10. Oyama ST (2005) LeeY-K. J Phys Chem B 109:2109–2119

    Article  CAS  Google Scholar 

  11. Infantes-Molina A, Cecilia JA, Pawelec B, Fierro JLG, Rodríguez-Castellón E, Jiménez-López A (2010) Appl Catal A 390:253–263

    Article  CAS  Google Scholar 

  12. Badari AC, Harnos Sz, Lónyi F, Onyestyák GY, Štolcová M, Kaszonyi A, Valyon J (2015) Catal Commun 58:1–5

    Article  CAS  Google Scholar 

  13. Badari CA, Lónyi F, Drotár E, Kaszonyi A, Valyon J (2015) Appl Catal B 164:48–60

    Article  CAS  Google Scholar 

  14. Sawhill SJ, Phillips DC, Bussell ME (2003) J Catal 215:208–219

    Article  CAS  Google Scholar 

  15. Bui P, Cecilia JA, Oyama ST, Takagaki A, Infantes-Molina A, Zhao H, Li D, Rodríguez-Castellón E, López AJ (2012) J Catal 294:184–198

    Article  CAS  Google Scholar 

  16. Korányi TI, Vít Z, Poduval DG, Ryoo R, Kim HS, Hensen EJM (2008) J Catal 253:119–131

    Article  Google Scholar 

  17. Verhaak MJFM, Van Dillen AJ, Geus JW (1994) Catal Lett 26:37–53

    Article  CAS  Google Scholar 

  18. Cabello FM, Tichit D, Coq B, Vaccari A, Dung NT (1997) J Catal 167:142–152

    Article  CAS  Google Scholar 

  19. Dung NT, Tichit D, Chiche BH, Coq B (1998) Appl Catal A 169:179–187

    Article  Google Scholar 

  20. Huang Y, Sachtler WMH (1999) Appl Catal A 182:365–378

    Article  CAS  Google Scholar 

  21. Coq B, Tichit D, Ribet S (2000) J Catal 189:117–128

    Article  CAS  Google Scholar 

  22. Ortiz-Hernandez I, Williams CT (2007) Langmuir 23:3172–3178

    Article  CAS  Google Scholar 

  23. Pazé C, Bordiga S, Lamberti C, Salvalaggio M, Zecchina A, Bellussi G (1997) J Phys Chem B 101:4740–4751

    Article  Google Scholar 

  24. Larkin P (2011) Infrared and Raman spectroscopy; principles and spectral interpretation. Elsevier Inc, San Diego, pp 73–115

    Book  Google Scholar 

  25. Holly S, Sohár P (1968) Infrared spectroscopy. Műszaki Könyvkiadó, Budapest, pp 45–114 in Hungarian

    Google Scholar 

  26. Schenkel R, Olindo R, Kornatowski J, Lercher JA (2006) Appl Catal A 307:108–117

    Article  CAS  Google Scholar 

  27. Growder GA (1986) Spectrochim Acta Part A 42(10):1229–1231

    Article  Google Scholar 

  28. Busca G, Ramis G, Lorenzelli V, Rossi PF, La Ginestra A, Patrono P (1989) Langmuir 5:911–916

    Article  CAS  Google Scholar 

  29. Ramis G, Rossi PF, Busca G, Lorenzelli V, La Ginestra A, Patrono P (1989) Langmuir 5:917–923

    Article  CAS  Google Scholar 

  30. Sawhill SJ, Layman KA, Van Wyk DR, Engelhard MH, Wang C, Bussell ME (2005) J Catal 231:300–313

    Article  CAS  Google Scholar 

  31. Morimoto T, Imai J, Nagao M (1974) J Phys Chem 78:704–708

    Article  CAS  Google Scholar 

  32. Hunter EP, Lias SG (1998) J Phys Chem Ref Data 27:413–656

    Article  CAS  Google Scholar 

  33. Chojecki A (2004) Selective Hydrogenation of Butyronitrile over Raney-metals. DSc Dissertaion, Technischen Universität München, p 74

  34. Pálkova H, Madejová J, Zimowska M, Serwicka EM (2010) Microporous Mesoporous Mater 127:237–244

    Article  Google Scholar 

  35. Varade D, Haraguchi K (2013) Langmuir 29:1977–1984

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to the Hungary-Slovakia Cross-border Co-operation Program (Project registration number: HUSK/1101/1.2.1/0318) for supporting this research. We also acknowledge the financial support of the Hungarian State and the European Union under the TAMOP-4.2.2.A-11/1/KONV-2012-0071 and TAMOP-4.1.1.C-12/1/KONV-2012-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Lónyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badari, C.A., Lónyi, F., Dóbé, S. et al. Catalytic hydrodenitrogenation of propionitrile over supported nickel phosphide catalysts as a model reaction for the transformation of pyrolysis oil obtained from animal by-products. Reac Kinet Mech Cat 115, 217–230 (2015). https://doi.org/10.1007/s11144-015-0842-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0842-3

Keywords

Navigation