Skip to main content
Log in

Micro-kinetic modeling of the catalytic dehydration of 1-decanol over precipitated γ-Al2O3

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The mechanisms of the dehydration reaction of 1-decanol to 1-decene over precipitated gamma-alumina (γ-Al2O3) by means of the micro-kinetic modeling approach were investigated. Experimental data were collected in the reaction temperature range of 533–608 K, while the retention time was varied from 0.029 to 0.15 h. The γ-Al2O3 catalyst was synthesized using a traditional precipitation method. The yield of both internal olefins and 1-decene increased with increasing reaction temperature. Conversely, the yield of di-n-decyl ether decreased with increasing temperature. An increase in retention time increased the yield of 1-decene and internal olefins. These experimental data correlated well with the rate equation that assumes the formation of 1-decene to be reversible and a dual-site reaction. It is reasonable to state that internal isomerization is reversible with a single-site reaction. The apparent activation energy for the dehydration reaction of 1-decanol to 1-decene, obtained from the Arrhenius plot data, was 102 ± 2 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(K_{DeOH}\) :

Equilibrium constant for the adsorption of 1- decanol

\(K_{{D_{1} }}\) :

Equilibrium constant for the adsorption of 1-decene

\(K_{{D_{2} }}\) :

Equilibrium constant for the adsorption of internal olefins

\(K_{DDE}\) :

Equilibrium constant for the adsorption of di-n-decyl ether

\(P_{i}\) :

Partial pressure of species i

\(\theta_{V}\) :

Fractional coverage of vacant sites

\(\theta_{i}\) :

Fractional coverage of species i

\(S\) :

Vacant sites

W :

Water molecule (H 2 O)

\(k_{{s,D_{1} }}^{ + }\) :

Rate constant for the forward dehydration reaction to 1-decene

\(k_{{s,D_{1} }}^{ - }\) :

Rate constant for the backward dehydration reaction to 1-decanol

\(k_{{s,D_{2} }}^{ + }\) :

Rate constant for the forward isomerization reaction to internal olefins

\(k_{{s,D_{2} }}^{ - }\) :

Rate constant for the backward isomerization reaction to 1-decene

References

  1. Haghighi SS, Rahimpour M, Raeissi S, Dehghani O (2013) Chem Eng J 228:1158–1167

    Article  Google Scholar 

  2. Lee B, Yoo S, Kang C, Lee H, Ahn SM, Nath R (2004) Honeywell User Group 2004, Phoenix, Arizona

  3. Brethauer S, Wyman CE (2010) Bioresour Technol 101:4862–4874

    Article  CAS  Google Scholar 

  4. Mudge SM (2005) Soap Deterg Assoc 3:11–17

    Google Scholar 

  5. Shenga Q, Linga K, Li Z, Zhao L (2013) Fuel Process Technol 110:73–78

    Article  Google Scholar 

  6. Mortier RM, Fox MF, Orszulik ST (2010) Chemistry and technology of lubricants. Springer Science, New York

    Book  Google Scholar 

  7. Tanabe K, Tsutomu T (1974) Bull Chem Soc Jpn 47:424–429

    Article  Google Scholar 

  8. Ptaszek A, Grzesik M (2010) Chem Process Eng 31:43–51

    CAS  Google Scholar 

  9. Arenamnarta S, Trakarnpruk W (2006) Int J Appl Sci Eng 4:21–32

    Google Scholar 

  10. Baertsch CD, Komala KT, Chua YH, Iglesia E (2002) J Catal 205:44–57

    Article  CAS  Google Scholar 

  11. West RM, Braden DJ, Dumesic JA (2009) J Catal 262:134–143

    Article  CAS  Google Scholar 

  12. Park C, Keane MA (2001) J Mol Catal A 166:303–322

    Article  CAS  Google Scholar 

  13. Ivanova S, Vanhaecke E, Dreibine L, Louis B, Pham-Huu C (2009) Appl Catal A359:151–157

    Article  Google Scholar 

  14. Chen G, Li S, Jiao F, Yuan Q (2007) Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catal Today. doi:10.1016/j.cattod.2007.01.071

    Google Scholar 

  15. Najafabadi AT, Fatemi S, Sohrabi M, Salmasi M (2012) J Ind Eng Chem 18:29–37

    Article  CAS  Google Scholar 

  16. Fatourehchia N, Sohrabia M, Royaeea SJ, Mirarefina SM (2011) Chem Eng Res Des 89:811–816

    Article  Google Scholar 

  17. Kagyrmanova A, Chumachenko V, Korotkikh V, Kashkin V, Noskov A (2011) Chem Eng J 176:188–194

    Article  Google Scholar 

  18. Nel RJJ, Klerk A (2009) Ind Eng Chem Res 48:5230–5238

    Article  CAS  Google Scholar 

  19. Katritzky AR, Nichols D, Siskin M, Murugan R, Balasubramanian M (2001) Chem Rev 101(4):837–892

    Article  CAS  Google Scholar 

  20. Wu Q, Zhang F, Yang J, Li Q, Tu B, Zhao D (2011) Microporous Mesoporous Mater 143:406–412

    Article  CAS  Google Scholar 

  21. Zhang L, Zhang HT, Ying WY, Fang DY (2011) World Acad Sci 59:1538–1543

    Google Scholar 

  22. Bertero NM, Apesteguía CR, Marchi AJ (2009) Catal Commun 10:1339–1344

    Article  CAS  Google Scholar 

  23. Wu Q, Zhang F, Yang J, Li Q, Tu B, Zhao D (2011) Microporous Mesoporous Mater 143:406–412

    Article  CAS  Google Scholar 

  24. Weingarten R, Tempsett G, Conner WC, Hyber GW (2011) J Catal 279:174–182

    Article  CAS  Google Scholar 

  25. Bokad VV, Yadav GD (2011) Appl Clay Sci 53:263–271

    Article  Google Scholar 

  26. Skrdla PJ, Lindemann C (2003) Appl Catal A 246:227–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial supports from the PTT Public Company Ltd., Thailand and Faculty of Engineering, Thammasat University. Thailand Research Fund (TRF) is also acknowledged for providing a TRF Senior Research Scholar Grant (RTA578008) to the third author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malee Santikunaporn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echaroj, S., Santikunaporn, M. & Chavadej, S. Micro-kinetic modeling of the catalytic dehydration of 1-decanol over precipitated γ-Al2O3 . Reac Kinet Mech Cat 114, 75–91 (2015). https://doi.org/10.1007/s11144-014-0782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0782-3

Keywords

Navigation