Skip to main content
Log in

Thermal H2-treatment effects on CO/CO2 conversion over Pd-doped CeO2 comparison with Au and Ag-doped CeO2

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

CO oxidation to CO2 by Pd–CeO2 catalysts was tested by temperature-programmed mass spectrometry for as-prepared and thermal H2-treated Pd-doped CeO2 catalysts, compared with those of Ag and Au-doped CeO2. For the as-prepared samples, the oxidation rate and the T10 % (the temperature at 10 % CO conversion) occurred in the order of Au ≈ Pd > Ag ≫ undoped in the 1st CO oxidation run, while in the 2nd run, the order became Au > Pd > Ag ≫ undoped. For the thermal H2-treated samples, the order became Pd > Au > Ag > undoped and Au > Pd > Ag > undoped in the 1st and 2nd CO oxidation runs, respectively. The T10 % in the 2nd run commonly occurred at much lower temperatures for the metal-doped CeO2 upon achieving good metal-oxide interfacial contact during the 1st run. The T10 % of undoped CeO2 was the most significantly affected by the thermal treatment effects while those of metal-doped CeO2 catalysts were not greatly affected by the thermal H2-treatment. Based on these findings, the metal-support interaction/interface is more important than the surface area, Au (88 m2/g) > Ag (59 m2/g) ≈ Pd ≈ undoped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Trovarelli A (1996) Catal Rev 38(4):439–520

    Article  CAS  Google Scholar 

  2. Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285–298

    Article  CAS  Google Scholar 

  3. Ho KY, Yeung KLJ (2006) J Catal 242:131–141

    Article  CAS  Google Scholar 

  4. Vivier L, Duprez D (2010) ChemSusChem 3:654–678

    Article  CAS  Google Scholar 

  5. Sun C, Li H, Chen L (2012) Energy Environ Sci 5:8475–8505

    Article  CAS  Google Scholar 

  6. Kim HY, Lee HM, Henkelman G (2012) J Am Chem Soc 134:1560–1570

    Article  CAS  Google Scholar 

  7. Hsu LC, Tsai MK, Lu YH, Chen HT (2013) J Phys Chem C 117:433–444

    Article  CAS  Google Scholar 

  8. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surf Sci Rep 62:219–270

    Article  CAS  Google Scholar 

  9. Fernandez-Garcia M, Martinez-Arias A, Hanson JC, Rodriguez JA (2004) Chem Rev 104:4063–4104

    Article  CAS  Google Scholar 

  10. Rao R, Zhang Q, Liu H, Yang M, Ling Q, Zhang A (2012) Cryst Eng Comm 14:5929–5936

    Article  CAS  Google Scholar 

  11. Wang X, Jiang Z, Zheng B, Xie Z, Zheng L (2012) Cryst Eng Comm 14:7579–7582

    Article  CAS  Google Scholar 

  12. Dang F, Kato K, Imai H, Wada S, Haneda H, Kuwabara M (2010) Cryst Growth Des 10(10):4537–4541

    Article  CAS  Google Scholar 

  13. Yang S, Gao L (2006) J Am Chem Soc 128:9330–9331

    Article  CAS  Google Scholar 

  14. Shi W, Li Y, Hou J, Lv H, Zhao X, Fang P, Zheng F, Wang S (2013) J Mater Chem A 1:728–734

    Article  CAS  Google Scholar 

  15. Costa LOO, Silva AM, Borges LEP, Mattos LV, Noronha FB (2008) Catal Today 138:147–151

    Article  CAS  Google Scholar 

  16. Yang Z, Luo G, Lu Z, Hermansson K (2007) J Chem Phys 127:74704/1–74704/5

  17. Mattos LV, Noronha FB (2005) J Power Sources 152:50–59

    Article  CAS  Google Scholar 

  18. Christou SY, Efstathiou AM (2007) Top Catal 42–43(1–4):351–355

    Article  Google Scholar 

  19. Luo MF, Hou ZY, Yuan XX, Zheng XM (1998) Catal Lett 50:205–209

    Article  CAS  Google Scholar 

  20. Yi G, Xu Z, Guo G, Tanaka K, Yuan Y (2009) Chem Phys Lett 479:128–132

    Article  CAS  Google Scholar 

  21. Avgouropoulos G, Manzoli M, Boccuzzi F, Tabakova T, Papavasiliou J, Ioannides T, Idakiev V (2008) J Catal 256(2):237–247

    Article  CAS  Google Scholar 

  22. Shapovalov V, Metiu H (2007) J Catal 245:205–214

    Article  CAS  Google Scholar 

  23. Maldotti A, Molinari A, Juarez R, Garcia H (2011) Chem Sci 2:1831–1834

    Article  CAS  Google Scholar 

  24. Nie X, Qian H, Ge Q, Xu H, Jin R (2012) ACS Nano 6:6014–6022

    Article  CAS  Google Scholar 

  25. Li HF, Zhang N, Chen P, Luo MF, Lu JQ (2011) Appl Catal B110:279–285

    Article  Google Scholar 

  26. Kang Y, Sun M, Li A (2012) Catal Lett 142:1498–1504

    Article  CAS  Google Scholar 

  27. Chang S, Li M, Hua Q, Zhang L, Ma Y, Ye YB, Huang W (2012) J Catal 293:195–204

    Article  CAS  Google Scholar 

  28. Zhang J, Li L, Huang X, Li G (2012) J Mater Chem 22:10480–10487

    Article  CAS  Google Scholar 

  29. Bera P, Patil KC, Hegde MS (2000) Phys Chem Chem Phys 2:3715–3719

    Article  CAS  Google Scholar 

  30. Leyva-Perez A, Combita-Merchan D, Cabrero-Antonino JR, Al-Resayes SI, Corma A (2013) ACS Catal 3:250–258

    Article  CAS  Google Scholar 

  31. Zhang N, Liu S, Fu X, Xu YJ (2011) J Phys Chem C 115:22901–22909

    Article  CAS  Google Scholar 

  32. Jin M, Park JN, Jin M, Park JN, Shon JK, Kim JH, Li Z, Park YK, Kim JM (2012) Catal Today 185:183–190

    Article  CAS  Google Scholar 

  33. Tana, Wang F, Li H, Shen W (2011) Catal Today 175:541–545

  34. Mondragon-Galicia G, Perez-Hernandez R, Gutierrez-Wing CE, Mendoza-Anaya D (2011) Phys Chem Chem Phys 13:16756–16761

    Article  CAS  Google Scholar 

  35. Luo JY, Meng M, Xian H, Tu YB, Li XG, Ding T (2009) Catal Lett 133:328–333

    Article  CAS  Google Scholar 

  36. Ho KY, Yeung KLJ (2007) Gold Bull 40:15–30

    Article  CAS  Google Scholar 

  37. Qi J, Chen J, Li G, Li S, Gao Y, Tang Z (2012) Energy Environ Sci 5:8937–8941

    Article  CAS  Google Scholar 

  38. Balcha T, Strobl JR, Fowler C, Dash P, Scott RWJ (2011) ACS Catal 1:425–436

    Article  CAS  Google Scholar 

  39. Taguchi M, Takami S, Adschiri T, Nakane T, Sato K, Naka T (2011) Cryst Eng Comm 13:2841–2848

    Article  CAS  Google Scholar 

  40. Wu Z, Li M, Howe J, Meyer HM III, Overbury SH (2010) Langmuir 26:16595–16606

    Article  CAS  Google Scholar 

  41. Zhdanov VP, Kasemo B (1998) Appl Surf Sci 135:297–306

    Article  CAS  Google Scholar 

  42. Abad A, Almela C, Corma A, Garcia H (2006) Tetrahedron 62:6666–6672

    Article  CAS  Google Scholar 

  43. Aneggi E, Llorca J, Boaro M, Trovarelli A (2005) J Catal 234:88–95

    Article  CAS  Google Scholar 

  44. Ribeiro FH, Chow M (1994) Dalla Betta RA. J Catal 146:537–544

    Article  CAS  Google Scholar 

  45. Xu J, Ouyang L, Mao W, Yang XJ, Xu XC, Su JJ, Zhuang TZ, Li H, Han YF (2012) ACS Catal 2:261–269

    Article  CAS  Google Scholar 

  46. Arena F, Famulari P, Trunfio G, Bonura G, Frusteri F, Spadaro L (2006) Appl Catal B 66:81–91

    Article  CAS  Google Scholar 

  47. Zhou Z, Flytzani-Stephanopoulos M, Saltburg H (2011) J Catal 280:255–263

    Article  CAS  Google Scholar 

  48. Liang H, Raitano JM, He G, Akey AJ, Herman IP, Zhang L, Chan SW (2012) J Mater Sci 47:299–307

    Article  CAS  Google Scholar 

  49. Ojeda M, Zhan BZ, Iglesia E (2012) J Catal 285:92–102

    Article  CAS  Google Scholar 

  50. Feng L, Hoang DT, Tsung CK, Huang W, Lo SH, Wood JB, Wang H, Tang J, Yang P (2011) Nano Res 4:61–71

    Article  Google Scholar 

  51. Gamarra D, Camara Lopez A, Monte M, Rasmussen SB, Chinchilla LE, Hungria AB, Munuera G, Gyorffy N, Schay Z, Cortes Corberan V, Conesa JC, Martinez-Arias A (2013) Appl Catal B 130–131:224–238

    Article  Google Scholar 

  52. Skarman B, Wallenberg LR, Larsson PO, Andersson A, Bovin JO, Jacobsen SN, Helmersson U (1999) J Catal 181:6–15

    Article  CAS  Google Scholar 

  53. Nibbelke RH, Campman MAJ, Hoebink JHBJ, Marin GB (1997) J Catal 171:358–373

    Article  CAS  Google Scholar 

  54. Royer S, Duprez D (2011) Chem Cat Chem 3:24–65

    CAS  Google Scholar 

  55. Tang CW, Kuo MC, Lin CJ, Wang CB, Chien SH (2008) Catal Today 131:520–525

    Article  CAS  Google Scholar 

  56. Lente G (2013) ACS Catalysis 3:381–382

    Article  CAS  Google Scholar 

  57. Kozuch S (2013) ACS Catal 3:380

    Article  CAS  Google Scholar 

  58. Kozuch S, Martin JML (2012) ACS Catal 2:2787–2794

    Article  CAS  Google Scholar 

  59. Ritter SK (2013) Chem Eng News 91(9):46–47

    CAS  Google Scholar 

  60. Park Y, Kim SK, Pradhan D, Sohn Y (2014) Chem Eng J 250:25–34

    CAS  Google Scholar 

  61. Negreiros FR, Sementa L, Barcaro G, Vajda S, Apra E, Fortunelli A (2012) ACS Catal 2:1860–1864

    Article  CAS  Google Scholar 

  62. Gaudet JR, de la Riva A, Peterson EJ, Bolin T, Datye AK (2013) ACS Catal 3:846–855

    Article  CAS  Google Scholar 

  63. Meher SK, Cargnello M, Troiani H, Montini T, Rao GR, Fornasiero P (2013) Appl Catal B 130–131:121–131

    Article  Google Scholar 

  64. Liu K, Wang A, Zhang T (2012) ACS Catal 2:1165–1178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2011-0025386), and the Department of Science and Technology, New Delhi through the Indo-Korea/P-02 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngku Sohn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Kim, S.K., Pradhan, D. et al. Thermal H2-treatment effects on CO/CO2 conversion over Pd-doped CeO2 comparison with Au and Ag-doped CeO2 . Reac Kinet Mech Cat 113, 85–100 (2014). https://doi.org/10.1007/s11144-014-0757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0757-4

Keywords

Navigation