Skip to main content
Log in

Oxidative coupling of methane in a corona discharge plasma reactor using HY zeolite as a catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Oxidative coupling of methane in the presence of corona discharge plasma has been studied for the production of higher hydrocarbons under the conditions of ambient temperature and atmospheric pressure. The corona discharge was created by applying 3 kV (DC) between a tip and a plate electrode, 1.5 and 2.5 mm apart, in a tubular reactor. The effects of variables such as methane to oxygen ratio, total flow rate, electric current and more importantly, electrode gap distance were investigated. The electrode gap distance affected the electric field strength and subsequent plasma reactions. Five electrodes shaped like needles in the tip plate were applied to create more discharge intensity. At CH4/O2 ratio = 4, total flow rate = 4 mL/min, electric current = 10 mA and electrode gap distance = 1.5 mm, 31.9, 58 and 55 % of C2 yield, C2 selectivity and methane conversion, respectively were achieved. The main products were ethane, ethylene, acetylene, while CO and CO2 were also observed. The corona discharge interaction with HY-zeolite catalyst has led to low temperature methane conversion. Thus, the effect of surface modified zeolite catalyst was also examined. At a CH4/O2 ratio of 4 and total flow rate of 4 mL/min, 59.4, 69.7 and 85.3 %, of C2 yield, C2 selectivity and methane conversion, respectively were achieved. Experimental results revealed that corona discharge techniques, in the presence of HY-zeolite catalyst, has potentials for improving methane conversion, C2 selectivity and C2 yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li M, Xu G, Tian Y, Chen L, Fu H (2004) Carbon dioxide reforming of methane using DC corona discharge plasma reaction. J Phys Chem A 108:1687–1693

    Article  CAS  Google Scholar 

  2. Khassin A, Pietruszka B, Heintze M, Parmon V (2004) The impact of a dielectric barrier discharge on the catalytic oxidation of methane over Ni-containing catalyst. Reac Kinet Mech Cat Lett 82:131–137

    Article  CAS  Google Scholar 

  3. Wan YJ, Fan X, Zhu TL (2011) Removal of low-concentration formaldehyde in air by DC corona discharge plasma. Chem Eng J 171:314–319

    Article  CAS  Google Scholar 

  4. Janda M, Morvova M, Machala Z, Morva I (2008) Study of plasma induced chemistry by DC discharges in CO2/N2/H2O mixtures above a water surface. Orig Life Evol Biosph 38:23–35

    Article  CAS  Google Scholar 

  5. Song S-H, Park J, Chang T-S, Suh J-K (2013) Enhancing effects on the catalytic performance during the preparation of nickel supported lanthanum–alumina catalyst for the catalytic carbon dioxide dry reforming of methane. Reac Kinet Mech Cat 108:161–171

    Article  CAS  Google Scholar 

  6. Li D, Li X, Bai M, Tao X, Shang S, Dai X et al (2009) CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: a high conversion ability. Int J Hydrog Energy 34:308–313

    Article  Google Scholar 

  7. Indarto A, Choi JW, Lee H, Song HK (2008) Decomposition of greenhouse gases by plasma. Environ Chem Lett 6:215–222

    Article  CAS  Google Scholar 

  8. Ghose R, Hwang HT, Varma A (2014) Oxidative coupling of methane using catalysts synthesized by solution combustion method: catalyst optimization and kinetic studies. Appl Catal A Gen 472:39–46

    Article  CAS  Google Scholar 

  9. Vandenbulcke L, de Persis S, Gries T, Delfau JL (2012) Molecular beam mass spectrometry and kinetic modelling of CH4–CO2–H2O plasmas for syngas production. J Taiwan Inst Chem Eng 43:724–729

    Article  CAS  Google Scholar 

  10. Linga Reddy E, Biju VM, Subrahmanyam C (2012) Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma. Appl Energy 95:87–92

    Article  CAS  Google Scholar 

  11. Benlounes O, Cheknoun S, Mansouri S, Rabia C, Hocine S (2011) Catalytic activation of C–H bonds of hydrocarbons by heteropolycompounds. J Taiwan Inst Chem Eng 42:132–137

    Article  CAS  Google Scholar 

  12. Lee MR, Park MJ, Jeon W, Choi JW, Suh YW, Suh DJ (2011) PLS-based kinetics modeling and optimization of the oxidative coupling of methane over Na(2)WO(4)/Mn/SiO(2) catalyst. Korean J Chem Eng 28:2142–2147

    Article  CAS  Google Scholar 

  13. Y-R Zhu, Z-H Li, Y-H Zhou, Lv J, Wang H-T (2005) Plasma treatment of Ni and Pt catalysts for partial oxidation of methane. Reac Kinet Mech Cat Lett 87:33–41

    Article  Google Scholar 

  14. Yao S, Ouyang F, Nakayama A, Suzuki E, Okumoto M, Mizuno A (2000) Oxidative coupling and reforming of methane with carbon dioxide using a high-frequency pulsed plasma. Energy Fuels 14:910–914

    Article  CAS  Google Scholar 

  15. Cho W, Baek Y, Moon S-K, Kim YC (2002) Oxidative coupling of methane with microwave and RF plasma catalytic reaction over transitional metals loaded on ZSM-5. Catal Today 74:207–223

    Article  CAS  Google Scholar 

  16. Li L, Chen DR (2011) Performance study of a DC-corona-based particle charger for charge conditioning. J Aerosol Sci 42:87–99

    Article  CAS  Google Scholar 

  17. Otto AJ, Reader HC (2011) HVDC corona space charge modeling and measurement. IEEE Trans Power Deliv 26:2630–2637

    Article  Google Scholar 

  18. Liu C, Eliasson B, Xue B, Li Y, Wang Y (2001) Zeolite-enhanced plasma methane conversion directly to higher hydrocarbons using dielectric-barrier discharges. Reac Kinet Mech Cat Lett 74:71–77

    Article  CAS  Google Scholar 

  19. Indarto A (2008) Hydrogen production from methane in a dielectric barrier discharge using oxide zinc and chromium as catalyst. J Chin Inst Chem Eng 39:23–28

    Article  Google Scholar 

  20. Song HK, Lee H, Choi JW, Na B (2004) Effect of electrical pulse forms on the CO2 reforming of methane using atmospheric dielectric barrier discharge. Plasma Chem Plasma Process 24:57–72

    Article  Google Scholar 

  21. Wang F, Tang X, Yi H, Li K, Wang J, Wang C (2014) NO removal in the process of adsorption non-thermal plasma catalytic decomposition. RSC Adv 4:8502–8509

    Article  CAS  Google Scholar 

  22. Li M-W, Xu G-H, Tian Y-L, Chen L, Fu H-F (2004) Carbon Dioxide reforming of methane using DC corona discharge plasma reaction. J Phys Chem A 108:1687–1693

    Article  CAS  Google Scholar 

  23. Xi-Zhen L, Wang J-G, Liu C, He F, Eliasson B (2003) Partial oxidation of methane to syngas over Ni–Fe/Al2O3 catalyst with plasma enhanced activity. Reac Kinet Mech Cat Lett 79:69–76

    Article  Google Scholar 

  24. Dedov AG, Makhlin VA, Podlesnaya MV, Zyskin AG, Loktev AS, Tyunjaev AA, Nipan GD, Koltsova TN, Ketsko VA, Kartasheva MN et al (2010) Kinetics, mathematical modeling, and optimization of the oxidative coupling of methane over a LiMnW/SiO(2) catalyst. Theor Found Chem Eng 44:1–11

    Article  CAS  Google Scholar 

  25. Yu Q, Liu T, Wang H, Xiao L, Chen M, Jiang X, Zheng X (2012) Cold plasma-assisted selective catalytic reduction of NO over B2O3/γ-Al2O3. Chin J Catal 33:783–789

    Article  CAS  Google Scholar 

  26. Su J, Zhou J, Liu C, Wang X, Guo H (2010) Gas phase epoxidation of propylene with TS-1 and in situ H2O2 produced by a H2/O2 plasma. Chin J Catal 31:1195–1199

    Article  CAS  Google Scholar 

  27. Branco JB, Ferreira AC, do Rego AMB, Ferraria AM, Lopes G, Gasche TA (2014) Oxidative coupling of methane over KCl–LnCl3 eutectic molten salt catalysts. J Mol Liq 191:100–106

    Article  CAS  Google Scholar 

  28. Lee H, Lee CH, Choi JW, Song HK (2007) The effect of the electric pulse polarity on CO2 reforming of CH4 using dielectric barrier discharge. Energy Fuels 21:23–29

    Article  CAS  Google Scholar 

  29. Kameta K, Kouchi N, Ukai M, Hatano Y (2002) Photoabsorption, photoionization, and neutral-dissociation cross sections of simple hydrocarbons in the vacuum ultraviolet range. J Electron Spectrosc Relat Phenom 123:225–238

    Article  CAS  Google Scholar 

  30. Wang Y, Liu C, Zhang YP (2005) Plasma methane conversion in the presence of dimethyl ether using dielectric-barrier discharge. Energy Fuels 19:877–881

    Article  CAS  Google Scholar 

  31. Lü J, Li Z (2010) Conversion of natural gas to C2 hydrocarbons via cold plasma technology. J Nat Gas Chem 19:375–379

    Article  Google Scholar 

  32. Xu Y, Liu S, Guo X, Wang L, Xie M (1994) Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts. Catal Lett 30:135–149

    Article  CAS  Google Scholar 

  33. Szöke A, Solymosi F (1996) Selective oxidation of methane to benzene over K2MoO4/ZSM-5 catalysts. Appl Catal A Gen 142:361–374

    Article  Google Scholar 

  34. Chen L, Lin L, Xu Z, Zhang T, Li X (1996) Promotional effect of Pt on non-oxidative methane transformation over Mo-HZSM-5 catalyst. Catal Lett 39:169–172

    Article  CAS  Google Scholar 

  35. Liu C, Eliasson B, Xue B, Li Y, Wang Y (2001) Zeolite-enhanced plasma methane conversion directly to higher hydrocarbons using dielectric-barrier discharges. Reac Kinet Mech Cat Lett 74:71–77

    Article  CAS  Google Scholar 

  36. Liu CJ, Mallinson R, Lobban L (1999) Comparative investigations on plasma catalytic methane conversion to higher hydrocarbons over zeolites. Appl Catal A Gen 178:17–27

    Article  CAS  Google Scholar 

  37. Liu C, Marafee A, Hill B, Xu G, Mallinson R, Lobban L (1996) Oxidative coupling of methane with ac and dc corona discharges. Ind Eng Chem Res 35:3295–3301

    Article  CAS  Google Scholar 

  38. Horvath G, Zahoran M, Mason NJ, Matejcik S (2011) Methane decomposition leading to deposit formation in a DC positive CH4–N2 corona discharge. Plasma Chem Plasma Process 31:327–335

    Article  CAS  Google Scholar 

  39. Wang L, Xu Y, Wong S-T, Cui W, Guo X (1997) Activity and stability enhancement of MoHZSM-5-based catalysts for methane non-oxidative transformation to aromatics and C2 hydrocarbons: effect of additives and pretreatment conditions. Appl Catal A Gen 152:173–182

    Article  CAS  Google Scholar 

  40. Guczi L, Sarma KV, Borkó L (1996) Non-oxidative methane coupling over Co–Pt/NaY bimetallic catalysts. Catal Lett 39:43–47

    Article  CAS  Google Scholar 

  41. Yilmaz B, Trukhan N, Müller U (2012) Industrial outlook on zeolites and metal organic frameworks. Chin J Catal 33:3–10

    Article  CAS  Google Scholar 

  42. Yoon S-J, Lee YH, Cho W-J, Koh I-O, Yoon M (2007) Synthesis of TiO2 entrapped EFAL-removed Y-zeolites: novel photocatalyst for decomposition of 2-methylisoborneol. Catal Commun 8:1851–1856

    Article  CAS  Google Scholar 

  43. Min G-H, Yim T, Lee HY, Huh DH, Lee E, Mun J, Oh SM, Kim YG (2006) Synthesis and properties of ionic liquids: imidazolium tetrafluoroborates with unsaturated side chains. J Korean Chem Soc 27:847–852

    Article  CAS  Google Scholar 

  44. Kerryá Thomas J (1993) Preparation, characterization and photoreactivity of titanium(IV) oxide encapsulated in zeolites. J Chem Soc Faraday Trans 89:1861–1865

    Article  Google Scholar 

  45. Cho WJ, Seo Y, Jung SJ, Lee WG, Kim BC, Mathieson G et al (2013) Removal of Na from ionic liquids by zeolite for high quality electrolyte manufacture. Bull Korean Chem Soc 34:1693–1697

    Article  CAS  Google Scholar 

  46. Jwa E, Lee S, Lee H, Mok Y (2013) Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts. Fuel Process Technol 108:89–93

    Article  CAS  Google Scholar 

  47. Zhu A, Gong W, Zhang X, Zhang B (2000) Coupling of methane under pulse corona plasma (I)—in the absence of oxygen. Sci China Ser B Chem 43:208–214

    Article  Google Scholar 

  48. Larkin DW, Lobban LL, Mallinson RG (2001) Production of organic oxygenates in the partial oxidation of methane in a silent electric discharge reactor. Ind Eng Chem Res 40:1594–1601

    Article  CAS  Google Scholar 

  49. Larkin DW, Zhou L, Lobban LL, Mallinson RG (2001) Product selectivity control and organic oxygenate pathways from partial oxidation of methane in a silent electric discharge reactor. Ind Eng Chem Res 40:5496–5506

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their deepest appreciation to the Ministry of Higher Education (MOHE), Malaysia and Universiti Teknologi Malaysia (UTM) for the financial support of this research under LRGS (Long-term Research Grant Scheme;) and RUG (Research University Grant). One of the authors (SD) gratefully acknowledged the financial support received in the form of a fellowship (Ref. No.: UTM.J10.02.00/13.14/1/125-073) from UTM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Aishah Saidina Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delavari, S., Amin, N.A.S. & Mazaheri, H. Oxidative coupling of methane in a corona discharge plasma reactor using HY zeolite as a catalyst. Reac Kinet Mech Cat 113, 557–573 (2014). https://doi.org/10.1007/s11144-014-0741-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0741-z

Keywords

Navigation