Skip to main content
Log in

Direct side-chain oxidation of ethylbenzene over supported Co4HP2Mo15V3O62 catalysts as a clean and highly efficient approach to producing acetophenone

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The surface of acid-activated attapulgite (ATP) was modified by grafting 3-aminopropyltriethoxysilane (APTES) for the immobilization of heteropolyacid salt Co4HP2Mo15V3O62 (CoHPAs). The samples were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, specific surface area measurements, thermal analysis and field emission scanning electron microscopy. The catalytic activity was tested for the oxidation of ethylbenzene in the presence of 50 % H2O2 for the first time in this work. It was found that the activity of the ATP supported CoHPAs catalyst is obviously influenced by APTES grafting. The CoHPAs/ATPAPTES catalyst exhibits high activity owing to the silylation of ATP, with the conversion of ethylbenzene and selectivity of acetophenone up to 72.7 and 95.4 %, respectively. The results also show that the CoHPAs/ATPAPTES catalyst can be reused at least five times without significant decrease of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Chakrabarty R, Kalita D, Das BK (2007) Polyhedron 26:1239–1244

    Article  CAS  Google Scholar 

  2. Wang RX, Gao BJ, Jiao WZ (2009) Appl Surf Sci 255:4109–4113

    Article  CAS  Google Scholar 

  3. George K, Sugunan S (2008) Catal Commun 9:2149–2153

    Article  CAS  Google Scholar 

  4. Arshadi M, Ghiaci M (2011) Appl Catal A 399:75–86

    Article  CAS  Google Scholar 

  5. Lu CL, Liu ZH, Liu FL, Wu YY, Qin JW, He XL, Yin DL (2010) J Mol Catal A 331:106–111

    Article  CAS  Google Scholar 

  6. Olah GA (1963) Friedel–Crafts and related reactions. Wiley–Interscience, New York

    Google Scholar 

  7. Wentzel BB, Donners MPJ, Alsters PL, Feiters MC, Nolte RJM (2000) Tetrahedron 56:7797–7803

    Article  CAS  Google Scholar 

  8. Kresge CT, Leonowicz ME, Roth WJ, Vartulli JC, Beck JS (1992) Nature 359:710–712

    Article  CAS  Google Scholar 

  9. Parida KM, Dash SS (2009) J Mol Catal A 306:54–61

    Article  CAS  Google Scholar 

  10. Yuan JL, Yue P, Wang LL (2010) Powder Technol 202:190–193

    Article  CAS  Google Scholar 

  11. Chen M, Wu YY, Luo Y, He MQ, Xie JM, Li HM, Yuan XH (2011) Reac Kinet Mech Cat 102:103–111

    Article  CAS  Google Scholar 

  12. Li GX, Wang B, Wang JM, Ding Y, Yan L, Suo JS (2005) J Mol Catal A 236:72–76

    Article  CAS  Google Scholar 

  13. Briand LE, Baronetti GT, Thomas HJ (2003) Appl Catal A 256:37–50

    Article  CAS  Google Scholar 

  14. Okumura K, Ito S, Yonekawa M, Nakashima A, Niwa M (2009) Top Catal 52:649–656

    Article  CAS  Google Scholar 

  15. Sawant DP, Vinu A, Justus J, Srinivasu P, Halligudi SB (2007) J Mol Catal A 276:150–157

    Article  CAS  Google Scholar 

  16. Pizzio LR, Caceres CV, Blanco MN (1998) Appl Catal A 167:283

    Article  CAS  Google Scholar 

  17. Vazquez P, Pizzio L, Romanelli G, Autino J, Caceres C, Blanco M (2002) Appl Catal A 235:233

    Article  CAS  Google Scholar 

  18. He MQ, Pan AX, Xie JM, Jiang DL, Yuan XH, Chen M (2102) Reac Kinet Mech cat 107:333

    Google Scholar 

  19. Hernandez-Cortez JG, Lopez T, Manriquez ME, Gomez R, Na-varrete J (2003) J Sol–Gel Sci Technol 26:213

    Article  CAS  Google Scholar 

  20. Bachiller-Baeza B, Anderson JA (2002) J Catal 212:231

    Article  CAS  Google Scholar 

  21. Mukai SR, Sugiyama T, Tamon H (2003) Appl Catal A 256:99

    Article  CAS  Google Scholar 

  22. Haber J, Pamin K, Matachowski L, Mucha D (2003) Appl Catal A 256:141

    Article  CAS  Google Scholar 

  23. Rao PM, Wolfson A, Kababya S, Vega S, Landau MV (2005) J Catal 232:210–225

    Article  CAS  Google Scholar 

  24. Zhang LX, Jin QZ, Huang JH, Liu YF, Shan L, Wang XG (2010) Appl Surf Sci 256:5911–5917

    Article  CAS  Google Scholar 

  25. Kim H, Jung JC, Kim P, Yeom SH, Lee KY, Song IK (2006) J Mol Catal A 259:150

    Article  CAS  Google Scholar 

  26. Lei ZQ, Zhang QH, Luo JJ, He XY (2005) Tetrahedron Lett 46:3505–3508

    Article  CAS  Google Scholar 

  27. Liu P (2007) Appl Clay Sci 35:11–16

    Article  Google Scholar 

  28. Zhang LX, Jin QZ, Shan L, Liu YF, Wang XG, Huang JH (2010) Appl Clay Sci 47:229–234

    Article  CAS  Google Scholar 

  29. Galarza AR, Alejandre AG, Ramírez J (2011) J Catal 280:230–238

    Article  Google Scholar 

  30. Bokade VV, Yadav GD (2011) Appl Clay Sci 53:263–271

    Article  CAS  Google Scholar 

  31. Choi JH, Park DR, Park S, Song IK (2011) Catal Lett 14:826–832

    Article  Google Scholar 

  32. Deng YH, Wu F, Liu BZ, Hu XB, Sun C (2011) Chem Eng J 174:571–578

    Article  CAS  Google Scholar 

  33. Poz′niczek J, Ilnicka AM, Luban′ska A, Bielan′ski A (2005) Appl Catal A J 286:52–60

    Article  Google Scholar 

  34. Huang M, Chu W, Liao XM, Dai XY (2010) Chin Phys Chem 55:2652–2656

    CAS  Google Scholar 

  35. Newman AD, Brown DR, Siril P, Lee AF, Wilson K (2006) Phys Chem Chem Phys 8:2893–2902

    Article  CAS  Google Scholar 

  36. Ahmed OS, Dutta DK (2003) Thermochim Acta 395:209–216

    Article  CAS  Google Scholar 

  37. Maurya MR, Arya A, Ada˜o P, Pessoa JC (2008) Appl Catal A 351:239–252

    Google Scholar 

  38. Xue AL, Zhou SY, Zhao YJ, Lu XP, Han PF (2011) J Hazard Mater 194:7–14

    Google Scholar 

  39. Li XG, Wang J, He R (2007) Chin Chem Lett 18:1053–1056

    Article  CAS  Google Scholar 

  40. Bhoware SS, Singh AP (2007) J Mol Catal A 266:118–130

    Article  CAS  Google Scholar 

  41. Niasari MS (2008) J Mol Catal A 28:97–107

    Google Scholar 

  42. Jermy BR, Kim SY, Kim DK, Park DW (2011) J Ind Eng Chem 17:130–137

    Article  CAS  Google Scholar 

  43. Zhou YL, Lin SS, Xia DH, Xiang YZ (2012) Chin Chem Lett 23:895–898

    Article  CAS  Google Scholar 

  44. Maheswari R, Pachamuthu MP, Anand R (2012) J Porous Mater 19:103–110

    Article  CAS  Google Scholar 

  45. Imran G, Pachamuthu MP, Maheswari R, Ramanathan A, Basha SJS (2012) J Porous Mater 19:677–682

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding

The authors are grateful for the financial support of the National Natural Science Foundation of China (20961004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Li, Y., Mu, R. et al. Direct side-chain oxidation of ethylbenzene over supported Co4HP2Mo15V3O62 catalysts as a clean and highly efficient approach to producing acetophenone. Reac Kinet Mech Cat 109, 199–212 (2013). https://doi.org/10.1007/s11144-013-0555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0555-4

Keywords

Navigation