Skip to main content
Log in

On the Origin of Intense Radio Emission from the Brown Dwarfs

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Observations of quasi-periodic intense radio emission at 2–8 GHz from the brown dwarfs with a brightness temperature of up to Tb ∼ 1013 K and with a fairly narrow radiation pattern initiated a series of studies in which the radiation was interpreted in terms of the electron cyclotron maser emission generated by energetic electrons with the “loss cone.” The plasma mechanism of the radio emission was excluded from consideration because it requires that the electron plasma frequency should exceed the electron gyrofrequency in the source of the radio emission, i. e., νp > νc. In this paper, we propose a coherent plasma radiation mechanism for intense radio emission from the brown dwarfs. The possibility of the formation of hot extended coronae in the magnetic loops that occur in the atmospheres of the brown dwarfs as a result of the photospheric convection is shown. The electric currents generated in the magnetic loops by photospheric convection lead to the plasma heating and elevation of the “squeezed” atmosphere. This ensures that the condition νp > νce required for the plasma mechanism of radio emission is fulfilled at the coronal levels. In addition, the pumping mechanism supplying energetic particles into the coronae of the brown dwarfs, which maintain the long-term generation of intense radio emission from these stars, is studied. The parameters of the Langmuir turbulence explaining the observed properties of the radio emission from the brown stars are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.Burrows and J. Liebert, Rev. Modern Phys., 65, No. 2, 301 (1993).

    Article  ADS  Google Scholar 

  2. C. Helling and S.Casewell, Astron. Astrophys. Rev., 22, No. 11, 2 (2014).

    Google Scholar 

  3. G. Hallinan, A.Antonova, J. G. Doyle, et al., Astrophys. J ., 653, No. 1, 690 (2006).

    Article  ADS  Google Scholar 

  4. A.O. Benz and M.Güdel, Astron. Astrophys., 285, No. 5, 621 (1994).

  5. V. Ravi, G.Hallinan, G.Hobbs, and D. J.Champion, Astrophys. J ., 735, L2 (2011).

    Article  ADS  Google Scholar 

  6. R. Osten and R. Jayawardhana, Astrophys. J ., 644, No. 1, L67 (2006).

    Article  ADS  Google Scholar 

  7. G. Hallinan, A.Antonova, J. D. Doyle, et al., Astrophys. J ., 684, No. 1, 644 (2008).

    Article  ADS  Google Scholar 

  8. S.Yu, G.Hallinan, A. L.MacKinnon, et al., Astron. Astrophys., 525, No. 1, A39 (2011).

    Article  Google Scholar 

  9. A. V. Stepanov, B.Kliem, A. Krüger, et al., Astrophys. J ., 524, No. 2, 961 (1999).

    Article  ADS  Google Scholar 

  10. A. V. Stepanov, B.Kliem, V. V. Zaitsev, et al., Astron. Astrophys., 374, No. 8, 1072 (2001).

    Article  ADS  Google Scholar 

  11. V. V. Zaitsev, A. G.Kislyakov, A. V. Stepanov, et al., Astron. Lett ., 30, No. 5, 319 (2004).

    Article  ADS  Google Scholar 

  12. V. L. Ginzburg and V. V. Zaitsev, Nature, 222, No. 5190, 230 (1968).

    Article  ADS  Google Scholar 

  13. C.Trigilio, P. Leto, F. Leone, et al., Astron. Astrophys., 362, No. 10, 281 (2000).

    ADS  Google Scholar 

  14. E.G. Koupriyanova and A.V. Stepanov, Radiophys. Quantum Electron., 44, No. 9, 726 (2001).

    Article  Google Scholar 

  15. V. V. Zaitsev, A. V. Stepanov, and P.Kaufmann, Solar Phys., 289, No. 8, 3017 (2014).

    Article  ADS  Google Scholar 

  16. S.Mohanty, G.Basri, F. Shu, et al., Astrophys. J ., 571, No. 1, 469 (2002).

    Article  ADS  Google Scholar 

  17. D. T. Osterbrock, Astrophys. J ., 118, No. 5, 529 (1953).

    Article  ADS  Google Scholar 

  18. S.M. Rucinski, Acta Astronomica, 29, No. 2, 203 (1979).

    ADS  Google Scholar 

  19. M. L. Khodachenko and V.V. Zaitsev, Astrophys. Space Sci ., 279, No. 4, 389 (2002).

    Article  ADS  Google Scholar 

  20. A. V. Stepanov, V.V. Zaitsev, and V. M. Nakariakov, Coronal Seismology: Waves and Oscillations in Stellar Coronae, Wiley-VCH Verlag GmbH&Co, Weinheim, Germany (2012).

    Book  Google Scholar 

  21. J. C.Brown, Solar Phys., 29, No. 2, 421 (1973).

    Article  ADS  Google Scholar 

  22. D. A.Verner and G. J. Ferland, Astrophys. J. Suppl., 103, No. 4, 467 (1996).

    Article  ADS  Google Scholar 

  23. R. W. P.McWhirter, P.C.Thonemann, and R.Wilson, Astron. Astrophys., 40, Nos. 1–2, 63 (1975).

  24. V. V. Zaitsev, A. V. Stepanov, S.Urpo, and S.Pohjolainen, Astron. Astrophys., 337, No. 9, 887 (1998).

    ADS  Google Scholar 

  25. H.Knoepfel and D.A. Spong, Nucl. Fusion, 19, No. 6, 785 (1979).

    Article  ADS  Google Scholar 

  26. V. V. Zaitsev and A. V. Stepanov, Solar Phys., 88, No. 6, 297 (1983),

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zaitsev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 11, pp. 966–976, November 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, V.V., Stepanov, A.V. On the Origin of Intense Radio Emission from the Brown Dwarfs. Radiophys Quantum El 59, 867–875 (2017). https://doi.org/10.1007/s11141-017-9757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9757-3

Navigation