Skip to main content
Log in

Influence Nonuniformity of the Atmospheric Water Vapor Field on the Phase Measurements of Radio Signals from Global Navigation Satellite Systems

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the experimental results for the horizontal gradients of integrated content of atmospheric water vapor, which are retrieved from the phase measurements of signals in the receiver network of the global navigation satellite systems in 2011 in the Republic of Tatarstan. The seasonal gradient variation is found. The meridional gradient usually shows a decrease in integrated water vapor with increasing latitude, and its monthly mean values are equal to −1.8 mm and 0.1 mm of precipitable water per 100 km in August and December, respectively. The zonal monthly average gradient is somewhat smaller in magnitude than the meridional one and is equal 0.1 mm and −0.8 mm per 100 km in March/June and May/October, respectively. Instantaneous values of the gradients can by an order of magnitude higher than the monthly mean values. Contribution from the gradient of integral water vapor to the phase-measurement difference between two antennas spaced 30 km apart is shown to attain its maximum of 141.5 mm in August for the zenith angle 80°. Errors in determining the mutual location of the ground-based antennas of global navigation satellite systems due to the water vapor gradients can reach 66 mm and 16.9 mm in August and February, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. I. Yakovlev, Space Radio Science, Taylor and Francis, London (2003).

    Google Scholar 

  2. P. Haefele, L. Martin, M. Becker, et al., in: Proc. 17th Int. Technical Meeting of the Satellite Division of the Institute of Navigation, September 21–24, 2004, Long Beach, USA, p. 2289.

  3. O. G. Khutorova, G. M. Teptin, A. A.Vasilyev, et al., Radiophys. Quantum Electron., 54, No. 1, 1 (2011).

    Article  ADS  Google Scholar 

  4. G. M. Teptin, O. G. Khutorova, D. P. Zinin, et al., Radiophys. Quantum Electron., 53, No. 1, 1 (2010).

    Article  ADS  Google Scholar 

  5. V. E. Khutorov, A. A. Zhuravlev, and G. M. Teptin, Radiophys. Quantum Electron., 55, No. 5, 289 (2012).

    Article  ADS  Google Scholar 

  6. O. G. Khutorova, V. V. Kalinnikov, and T. R. Kurbangaliev, Atmos. Okean. Opt., 25, No. 6, 429 (2012).

    Article  Google Scholar 

  7. G. Xu, GPS: Theory, Algorithms, and Applications, Springer, Berlin (2007).

    Google Scholar 

  8. T. Schuler, “On ground-based GPS tropospheric delay estimation.” PhD thesis, Munchen (2001), p. 364.

  9. http://85.233.70.122:8080/geopp_ gnweb/gnweb.html.

  10. J. M. Rueger, Refractive Indices of Light, Infrared and Radio Waves in the Atmosphere, UNSW, Sydney (2002).

    Google Scholar 

  11. V. B. Mendes, Modeling the Neutral-Atmospheric Propagation Delay in Radiometric Space Techniques, UNB, Brunswick (1999).

    Google Scholar 

  12. V. B. Mendes, G. Prates, E. C. Pavlis, et al., Geophys. Res. Lett, 29, No. 10, 53 (2002).

    Article  Google Scholar 

  13. V. V. Kalinnikov and G. M. Teptin, Inzh. Izys., No. 5, 26 (2012).

  14. V. V. Kalinnikov, O. G. Khutorova, and G. M. Teptin, Izvestiya, Atmos. Ocean. Phys, 48, No. 6, 631 (2012).

    Article  ADS  Google Scholar 

  15. S. Schaer, “Mapping and predicting Earth’s ionosphere using the Global Positioning System.” PhD thesis, Bern (1999).

  16. http://igscb.jpl.nasa.gov/components/usage.html .

  17. K. Brammer and G. Siffling, Kalman–Bucy Filters, Artech House, Norwood, Ma. (1989).

    Google Scholar 

  18. E. Kalnay, M. Kanamitsu, R. Kistler, et al., Bull. Am. Meteor. Soc., 77, No. 3, 437 (2011).

    Article  Google Scholar 

  19. R. Santerre, GPS Satellite Sky Distribution: Impact on the Propagation of Some Important Errors in Precise Relative Positioning, UNB, Brunswick (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Teptin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 2, pp. 96–103, February 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinnikov, V.V., Khutorova, O.G. & Teptin, G.M. Influence Nonuniformity of the Atmospheric Water Vapor Field on the Phase Measurements of Radio Signals from Global Navigation Satellite Systems. Radiophys Quantum El 56, 88–94 (2013). https://doi.org/10.1007/s11141-013-9418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-013-9418-0

Keywords

Navigation