Skip to main content
Log in

Diophantine approximation with four squares and one kth power of primes

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let k be an integer with \(k\ge 3\) and \(\eta \) be any real number. Suppose that \(\lambda _1, \lambda _2, \lambda _3, \lambda _4, \mu \) are non-zero real numbers, not all of the same sign and \(\lambda _1/\lambda _2\) is irrational. It is proved that the inequality \(|\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+\eta |<(\max \ p_j)^{-\sigma }\) has infinitely many solutions in prime variables \(p_1, p_2, \ldots , p_5\), where \(0<\sigma <\frac{1}{16}\) for \(k=3,\ 0<\sigma <\frac{5}{3k2^k}\) for \(4\le k\le 5\) and \(0<\sigma <\frac{40}{21k2^k}\) for \(k\ge 6\). This gives an improvement of an earlier result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook, R.J.: The value of additive forms at prime arguments. Journal de Théorie des Nombres de Bordeaux 13, 77–91 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Davenport, H., Heilbronn, H.: On indefinite quadratic forms in five variables. J. Lond. Math. Soc. 21, 185–193 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ghosh, A.: The distribution of \(\alpha p^2\) modulo one. Proc. Lond. Math. Soc. 42, 252–269 (1981)

    Article  MATH  Google Scholar 

  4. Harman, G.: The values of ternary quadratic forms at prime arguments. Mathematika 51, 83–96 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hua, L.K.: Some results in additive prime number theory. Q. J. Math. (Oxford) 9, 68–80 (1938)

    Article  MATH  Google Scholar 

  6. Languasco, A., Zaccagnini, A.: A diophantine problem with a prime and three squares of primes. J. Number Theory 132, 3016–3028 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Languasco, A., Zaccagnini, A.: A diophantine problem with prime variables. arXiv:1206.0252 (2012)

  8. Languasco, A., Settimi, V.: On a diophantine problem with one prime, two squares of primes and \(s\) powers of two. Acta Arith. 154, 385–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, W.P., Wang, T.Z.: Diophantine approximation with four squares and one \(k\)-th power of primes. J. Math. Sci. Adv. Appl. 6(1), 1–16 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Li, W.P., Wang, T.Z.: Diophantine approximation with one prime and three squares of primes. Ramanujan J. 25, 343–357 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, Z.X., Sun, H.W.: Diophantine approximation with one prime and three squares of primes. Ramanujan J. 30, 327–340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn (Revised by Heath-Brown, D.R.). Oxford University Press, Oxford (1986)

  13. Vaughan, R.C.: The Hardy–Littlewood method, 2nd edn. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  14. Watson, G.L.: On indefinite quadratic forms in five variables. Proc. Lond. Math. Soc. 3(3), 170–181 (1953)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the two anonymous referees for useful comments and suggestions. The author would also like to thank Prof. Y. C. Cai for the guidance over the past years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanwu Mu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11201107, 11271283) and the Research Fund for the Doctoral Program of Xi’an Polytechnic University (Grant No. BS1508).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Q. Diophantine approximation with four squares and one kth power of primes. Ramanujan J 39, 481–496 (2016). https://doi.org/10.1007/s11139-015-9740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-015-9740-6

Keywords

Mathematics Subject Classification

Navigation