Skip to main content
Log in

On the rate of convergence for infinite server Erlang–Sevastyanov’s problem

  • Published:
Queueing Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Polynomial convergence rates in total variation are established in Erlang–Sevastyanov type problems with an infinite number of servers and a general distribution of service under assumptions on the intensity of service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adan, I., Weiss, G.: A loss system with skill based servers under assign to longest idle server policy. Probab. Eng. Inf. Sci. 26(03), 307–321 (2012)

    Google Scholar 

  2. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003)

    Google Scholar 

  3. Bambos, N., Walrand, J.: On stability of state-dependent queues and acyclic queueing networks. Adv. Appl. Probab. 21(3), 681–701 (1989)

    Article  Google Scholar 

  4. Baxendale, P.: T. E. Harris’s contribution to recurrent Markov processes and stochastic flows. Ann. Probab. 39(2), 417428 (2011)

    Article  Google Scholar 

  5. Bonald, T., Proutiére, A.: Insensitive bandwidth sharing in data networks. Queueing Syst. 44(1), 69–100 (2003)

    Article  Google Scholar 

  6. Borovkov, A.A.: Asymptotic Methods in Queuing Theory. Wiley, New York (1984)

    Google Scholar 

  7. Borovkov, A.A.: Ergodicity and Stability of Stochastic Processes. Wiley, New York (1998)

    Google Scholar 

  8. Browne, S., Sigman, K.: Work-modulated queues with applications to storage processes. J. Appl. Probab. 29, 699–712 (1992)

    Article  Google Scholar 

  9. Cheong, C.K., Heathcote, C.R.: On the rate of convergence of waiting times. J. Aust. Math. Soc. 5(3), 365–373 (1965)

    Article  Google Scholar 

  10. Davis, M.H.A.: Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. Ser. B 46(3), 353–388 (1984)

    Google Scholar 

  11. Doeblin, W.: Sur deux problèmes de M. Kolmogoroff concernant les chaînes dénombrables. Bull. Soc. Math. Fr. 66, 210–220 (1938)

    Google Scholar 

  12. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    Google Scholar 

  13. Dynkin, E.B.: Markov Processes, vol. I, II. Springer, Berlin (1965)

    Book  Google Scholar 

  14. Erlang, A. K.: Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges. Elektroteknikeren 13, 1917, 5–13 (1917) (in Danish); Engl. transl. P.O. Elect. Eng. J. 10, 189–197 (1918); Reprinted as: WEB-based edition by permission from the Danish Acad. Techn. Sci. at http://oldwww.com.dtu.dk/teletraffic/Erlang.html

  15. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    Book  Google Scholar 

  16. Falin, G.I.: Ergodicity, stability, and insensitivity for one class of circuit switching networks. Probl. Inf. Transm. 24(1), 56–67 (1988)

    Google Scholar 

  17. Falin, G.I.: Ergodicity and stability of systems with repeated calls. Ukr. Math. J. 41(5), 559–562 (1989)

    Article  Google Scholar 

  18. Fortet, R.: Calcul des probabilités. CNRS, Paris (1950)

    Google Scholar 

  19. Foss, S., Konstantopoulos, T.: An overview of some stochastic stability methods. J. Oper. Res. Soc. Jpn. 47(4), 275–303 (2004)

    Google Scholar 

  20. Gnedenko, B.V., Kovalenko, I.N.: Introduction to queueing theory. 2nd edn., rev. and suppl. Birkhäuser, Boston, MA (1991)

  21. Harris, T. E.: The Existence of Stationary Measures for Certain Markov Processes. In: Proceedings Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, pp. 113–124. University of California Press, Berkeley, CA (1956)

  22. Ivnickiǐ, V.A.: On the condition for the invariance of the stationary probabilities for queueing networks. Theory Probab. Appl. 27(1), 196–201 (1982)

    Google Scholar 

  23. Kalashnikov, V.V.: The property of \(\gamma \)-reflexivity for Markov sequences. Sov. Math. Dokl. 14, 1869–1873 (1973)

    Google Scholar 

  24. Kalashnikov, V.V.: Some properties of piecewise linear Markov processes. Theory Probab. Appl. 20, 560–571 (1975)

    Article  Google Scholar 

  25. Kalashnikov, V.V.: Topics on regenerative processes. CRC Press, Boca Raton (1993)

    Google Scholar 

  26. Kelbert, M., Veretennikov, A.: On the estimation of mixing coefficients for a multiphase service system. Queueing Syst. 25, 325–337 (1997)

    Article  Google Scholar 

  27. Khasminskii, R.: Stochastic Stability of Differential Equations, 2nd edn. Springer, Berlin (2010)

    Google Scholar 

  28. Khinchin, A.Ya.: Mathematical Methods in the Theory of Queueing, Trudy Mat. Inst. Steklov. 49, 3–122 (1955); Engl. transl. Griffin, London (1960).

  29. Khinchin, A.Ya.: Studies in Mathematical Theory of Queueing. State Publishing House for Physics-Mathematics Literature, Moscow (1963) (in Russian).

  30. Khinchin, A.Ya.: Erlang’s formulas in the theory of mass service. Theory Probab. Appl. 7, 320–325 (1963)

    Google Scholar 

  31. Koenig, D., Jansen, U.: Eine Invarianzeigenschaftzufaelliger Bedienungsprozesse mit positiven Geschwindigkeiten. Math. Nachr. 70, 321–364 (1975)

    Article  Google Scholar 

  32. Kolmogorov, A.N.: A local limit theorem for classical Markov chains. Izv. Akad. Nauk SSSR Ser. Mat. 13(4), 281–300 (1949)

    Google Scholar 

  33. Kovalenko, I.N.: On the conditions of independence of the stationary distribution laws of servicing time. Probl. Inf. Transm. 2, 147–152 (1962). (in Russian)

    Google Scholar 

  34. Kovalenko, I.N.: Sur la condition pour que, en régime stationnaire, la distribution soit independante des lois des durées de conversation. Ann. Télecomm. 17(7–8), 190–191 (1962)

    Google Scholar 

  35. Liptser, R.Sh., Shiryaev, A.N.: Stochastic calculus on filtered probability spaces. In: Prokhorov, YuV, Shiryaev, A.N. (eds.) Probability Theory III. Stochastic Calculus, pp. 111–157. Encyclopaedia of mathematical sciences. Springer, Berlin (1998)

  36. Massoulié, L.: Structural properties of proportional fairness: stability and insensitivity. Ann. Appl. Probab. 17(3), 809–839 (2007)

    Article  Google Scholar 

  37. Matthes, K.: Zür Theorie der Bedienungsprozesse. In: Trans. 3rd Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, pp. 513–528. Publishing House of the Czechoslovak Academy of Science, Liblice, Czechoslovakia (1962).

  38. Mejzler, D.: A note on Erlang’s formulas. Isr. J. Math. 3, 157–162 (1965)

    Article  Google Scholar 

  39. Miller, H.D.: Geometric ergodicity in a class of denumerable Markov chains. Z. Wahrsch. 4, 354–373 (1965)

    Article  Google Scholar 

  40. Neuts, M.F., Teugels, J.L.: Exponential ergodicity of the \(M/G/1\) queue. SIAM J. Appl. Math. 17(5), 921–929 (1969)

    Article  Google Scholar 

  41. Pechinkin, A.V., Solovyev, A.D., Yashkov, S.F.: A system with servicing discipline whereby the order of minimum remaining length is serviced first. Eng. Cybern. 17(5), 38–45 (1979)

    Google Scholar 

  42. Pechinkin, A.V.: On an invariant queueing system. Math. Operationsforsch. Statist. Ser. Optim. 14(3), 433–444 (1983)

    Article  Google Scholar 

  43. Schassberger, R.: Insensitivity of steady-state distributions of generalized Semi-Markov Processes. I. Ann. Probab. 5(1), 87–99 (1977)

    Article  Google Scholar 

  44. Schassberger, R.: Insensitivity of steady-state distributions of generalized Semi-Markov Processes. II. Ann. Probab. 6(1), 85–93 (1978)

    Article  Google Scholar 

  45. Sevastyanov, B. A.: Erlang formulae in telephone systems with arbitrary distribution function of call, Proceedings third All-Union Mathematical Congress, Moscow, June–July 1956, vol. 4, Publishing House of the Academy of Sciences of the USSR, 121–135 (1959) (in Russian).

  46. Sevastyanov, B.A.: An Ergodic theorem for Markov processes and its application to telephone systems with refusals. Theory Probab. Appl. 2(1), 104–112 (1957)

    Article  Google Scholar 

  47. Thorisson, H.: The queue GI/G/1: finite moments of the cycle variables and uniform rates of convergence. Stoch. Proc. Appl. 19(1), 85–99 (1985)

    Article  Google Scholar 

  48. Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000)

    Book  Google Scholar 

  49. Tuominen, P., Tweedie, R.L.: Exponential decay and ergodicity of general Markov processes. J. Appl. Probab. 16(4), 867–880 (1979)

    Article  Google Scholar 

  50. Tweedie, R. L.: Criteria for Rates of Convergence of Markov Chains, with Application to Queueing and Storage Theory. In: Probability Statistics Analysis, London Mathematical Society, Lecture Note Series, 79, pp. 260–276, Cambridge University Press, Cambridge (1983).

  51. van Doorn, E.A., Zeifman, A.I.: On the speed of convergence to stationarity of the Erlang loss system. Queueing Syst. 63, 241–252 (2009)

    Article  Google Scholar 

  52. Veretennikov, A.Yu., Zverkina, G.A. Simple proof of Dynkin’s formula for single-server systems and polynomial convergence rates, Markov Proc. Rel. Fileds (in press); arXiv:1306.2359 [math.PR] (2013).

  53. Veretennikov, A.Yu.: The ergodicity of service systems with an infinite number of servomechanisms. Math. Notes 22(4), 804–808 (1977)

    Google Scholar 

  54. Veretennikov, A.Yu.: Ergodicity and invariance principle for multiphase queuing systems. Autom. Remote Control 42(7), 906–909 (1981)

    Google Scholar 

  55. Veretennikov, A.Yu.: On polynomial mixing and convergence rate for stochastic difference and differential equations. Theory Probab. Appl. 44(2), 361–374 (2000)

    Google Scholar 

  56. Veretennikov, A.Yu.: On the mixing rate and convergence to the stationary distribution in the discrete Erlang problem. Autom. Remote Control 70, 1992–2002 (2009)

    Google Scholar 

  57. Veretennikov, A.Yu.: On the rate of mixing and convergence to a stationary distribution in Erlang-type systems in continuous time. Probl Inf. Transm. 46(4), 382–389 (2010)

    Google Scholar 

  58. Veretennikov, A.Yu.: On the rate of convergence to the stationary distribution in the single-server queuing systems. Avtomatika i Telemekhanika, 74(10), 23–35 (2013) (in Russian); Engl. transl. Autom. Remote Control 74(10), 1620–1629 (2013)

  59. Walton, N.S.: Insensitive, maximum stable allocations converge to proportional fairness. Queueing Syst. 68(1), 51–60 (2011)

    Article  Google Scholar 

  60. Whittle, P.: Partial balance and insensitivity. J. Appl. Probab. 2, 104–112 (1985)

    Google Scholar 

  61. Zachary, S.: A note on insensitivity in stochastic networks. J. Appl. Probab. 44(1), 238–248 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to G. A. Zverkina and to two anonymous Referees for many useful remarks. The support of RFBR Grant 13-01-12447 ofi_m2 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Veretennikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veretennikov, A.Y. On the rate of convergence for infinite server Erlang–Sevastyanov’s problem. Queueing Syst 76, 181–203 (2014). https://doi.org/10.1007/s11134-013-9384-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-013-9384-4

Keywords

Mathematics Subject Classification (2010)

Navigation