Skip to main content
Log in

Measurement device-independent quantum key distribution with heralded pair coherent state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The original measurement device-independent quantum key distribution is reviewed, and a modified protocol using heralded pair coherent state (HPCS) is proposed to overcome the quantum bit error rate associated with the dark count rate of the detectors in long-distance quantum key distribution. Our simulation indicates that the secure transmission distance can be improved evidently with HPCS owing to the lower probability of vacuum events when compared with weak coherent source scenario, while the secure key rate can be increased with HPCS due to the higher probability of single-photon events when compared with heralded single-photon source scenario. Furthermore, we apply the finite key analysis to the decoy state MDI-QKD with HPCS and obtain a practical key rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennet. C.H., Brassard, G.: Quantum cryptography[J]. Proceedings of the IEEE International Conference Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York. (1984)

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  3. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Braunstein, S.L., Pirandola, S., Życzkowski, K.: Better late than never: information retrieval from black holes. Phys. Rev. Lett. 110, 101301 (2013)

    Article  ADS  Google Scholar 

  6. Brassard, G., Lutkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  ADS  MATH  Google Scholar 

  7. Sun, S.H., Liang, L.M.: Experimental demonstration of an active phase randomization and monitor module for quantum key distribution. Appl. Phys. Lett. 101, 071107 (2012)

    Article  ADS  Google Scholar 

  8. Makarov, V., Skaar, J.: Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum Inf. Comput. 86, 0622–0635 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A. 78, 042333 (2008)

    Article  ADS  Google Scholar 

  10. Makarov, V.: Controlling passively-quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)

    Article  ADS  Google Scholar 

  11. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett 108, 130503 (2012)

    Article  ADS  Google Scholar 

  12. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  13. Tamaki, K., Lo, H.-K., Fung, C.-H.F., Qi, B.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85(4), 042307 (2012)

    Article  ADS  Google Scholar 

  14. Ma, X.C., Sun, S.H., Jiang, M.S., Gui, M., Liang, L.M.: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 042335 (2014)

    Article  ADS  Google Scholar 

  15. Zhang, Y.C., Li, Z.Y., Yu, S., Gu, W.Y., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325 (2014)

    Article  ADS  Google Scholar 

  16. Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)

    Article  ADS  Google Scholar 

  17. da Silva, T.F., Vitoreti, D., Xavier, G.B., do Amaral, G.C., Temporao, G.P., von der Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88, 052303 (2013)

    Article  ADS  Google Scholar 

  18. Liu, Y., Chen, T.-Y., Wang, L.-J., Liang, H., Shentu, G.-L., Wang, J., Cui, K., Yin, H.-L., Liu, N.-L., Li, L., et al.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)

    Article  ADS  Google Scholar 

  19. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.-K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503 (2014)

    Article  ADS  Google Scholar 

  20. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobasen, C.S., Andersen, U.L.: High-rate quantum cryptography in untrusted networks. Nat. Photonics 9, 397–402 (2015)

    Article  ADS  Google Scholar 

  21. Erven, C., Ma, X.F., Laflamme, R., Weihs, G.: Entangled quantum key distribution with a biased basis choice. New J. Phys. 11, 045025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett 99, 180503 (2007)

    Article  ADS  Google Scholar 

  23. Horikiri, T., Kobayashi, T.: Decoy state quantum key distribution with a photon number resolved heralded single photon source. Phys. Rev. A 73, 032331 (2006)

    Article  ADS  Google Scholar 

  24. Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)

    Article  ADS  Google Scholar 

  25. Zhou, C., Bao, W.S., Chen, W., Li, H.W., Yin, Z.-Q., Wang, Y., Han, Z.F.: Phase-encoded measurement device independent quantum key distribution with practical spontaneous parametric-down-conversion sources. Phys. Rev. A 88, 052333 (2013)

    Article  ADS  Google Scholar 

  26. Wang, Q., Wang, X.B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 4612 (2014)

    ADS  Google Scholar 

  27. Zhou, C., Bao, W.S., Fu, X.Q.: Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensity fluctuations. Sci. China Inf. Sci. 53(12), 2485–2494 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu, F., Zhang, C.H., Liu, A.P., Wang, Q.: Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources. Phys. Lett A. 380, 1408–1413 (2016)

    Article  ADS  Google Scholar 

  29. Ma, X.F., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A. 86, 062319 (2012)

    Article  ADS  Google Scholar 

  30. Agarwal, G.S.: Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission. Phys. Rev. Lett. 57, 1827–1830 (1986)

    ADS  Google Scholar 

  31. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.-K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank S.H. Sun for many helpful advices. This work is supported by the National Natural Science Foundation of China (Grant No. 61106068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Shang-Hong, Z. & Lei, S. Measurement device-independent quantum key distribution with heralded pair coherent state. Quantum Inf Process 15, 4253–4263 (2016). https://doi.org/10.1007/s11128-016-1393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1393-x

Keywords

Navigation