Skip to main content
Log in

Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum correlations are thought to be the reason why certain quantum algorithms overcome their classical counterparts. Since the nature of this resource is still not fully understood, we shall investigate how multipartite entanglement and non-locality among qubits vary as the quantum computation runs. We shall encounter that quantum measures on the whole system cannot account for their corresponding speedup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A 454, 339 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A 439, 553 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S. (ed) Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press (1994)

  4. Grover, L.K.: Quantum mechanics helps in searching for a needle in a Haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  5. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adiabatic Evolution, arXiv:quant-ph/0001106 (2000)

  6. Das, S., Kobes, R., Kunstatter, G.: Adiabatic quantum computation and Deutschs algorithm. Phys. Rev. A 65, 062310 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Apolloni, B., Caravalho, C., De Falco, D.: Quantum stochastic optimization. Stoch. Process. Appl. 33, 233–244 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Finila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994)

    Article  ADS  Google Scholar 

  9. Ray, P., Chakrabarti, B.K., Chakrabarti, A.: Sherrington–Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys. Rev. B 39, 11828 (1989)

    Article  ADS  Google Scholar 

  10. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Johnson, M.W., et al.: A scalable control system for a superconducting adiabatic quantum optimization processor. Supercond. Sci. Technol. 23, 065004 (2010)

    Article  ADS  Google Scholar 

  12. Berkley, A.J., et al.: A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23, 105014 (2010)

    Article  ADS  Google Scholar 

  13. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473, 194 (2011)

    Article  ADS  Google Scholar 

  14. Cohen, E., Tamir, B.: Quantum annealing—foundations and frontiers. Eur. Phys. J. Spec. Top. 224, 89–110 (2015)

    Article  Google Scholar 

  15. Lo, H.-K., Popescu, S., Spiller, T.: Introduction to Quantum Computation and Information. World Scientific, River-Edge (1998)

    Book  MATH  Google Scholar 

  16. Galindo, A., Martín-Delgado, M.A.: Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74, 347 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Williams, C.P., Clearwater, S.H.: Explorations in Quantum Computing. Springer, New York (1997)

    MATH  Google Scholar 

  19. Williams, C.P.: Quantum Computing and Quantum Communications. Springer, Berlin (1998)

    Google Scholar 

  20. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ekert, A., Jozsa, R.: Quantum computation and Shors factoring algorithm. Rev. Mod. Phys. 68, 773 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Berman, G.P., Doolen, G.D., Mainieri, R., Tsifrinovich, V.I.: Introduction to Quantum Computers. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  24. Batle, J., Casas, M.: Nonlocality and entanglement in the XY-model. Phys. Rev. A 82, 062101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A Math. Theor. 44, 445304 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  27. Orus, R., Latorre, J.I.: Universality of entanglement and quantum-computation complexity. Phys. Rev. A 69, 052308 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. Ukena, A., Shimizu, A.: Macroscopic Entanglement in Quantum Computation, arXiv:quant-ph/0505057 [quant-ph] (2005)

  29. Shimoni, Y., Shapira, D., Biham, O.: Entangled quantum states generated by Shor’s factoring algorithm. Phys. Rev. A. 72, 062308 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. Batle, J., et al.: Global versus local quantum correlations in the Grover search algorithm. Quantum Inf. Process. 15, 833–849 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)

    Google Scholar 

  32. Dirac, P.A.M.: On the theory of quantum mechanics. Proc. R. Soc. Lond. Ser. A 112, 661 (1926)

    Article  ADS  MATH  Google Scholar 

  33. Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. Ser. A 114, 243 (1927)

    Article  ADS  MATH  Google Scholar 

  34. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, Singapore (1955)

    MATH  Google Scholar 

  35. Peng, X.-H., et al.: Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101, 220405 (2008)

    Article  ADS  Google Scholar 

  36. Schutzhold, R., Schaller, G.: Adiabatic quantum algorithms as quantum phase transitions: first versus second order. Phys. Rev. A 74, 060304 (2006)

    Article  ADS  Google Scholar 

  37. Schaller, G., Schutzhold, R.: The role of symmetries in adiabatic quantum algorithms. Quantum Inf. Comput. 10, 0109–0140 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Xu, N., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501 (2012)

    Article  ADS  Google Scholar 

  39. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Brooke, J., Bitko, D., Rosenbaum, T.F., Aeppli, G.: Quantum annealing of a disordered magnet. Science 284, 779–781 (1999)

    Article  ADS  Google Scholar 

  41. Martonak, R., Santoro, G.E., Tosatti, E.: Quantum annealing of the traveling salesman problem. Phys. Rev. E 70, 057701 (2004)

    Article  ADS  Google Scholar 

  42. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998)

    Article  ADS  Google Scholar 

  43. Brown, I., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38, 1119 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  45. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46, 5375 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  47. Belinskii, A.V., Klyshko, D.N.: Interference of light and Bells theorem. Phys. Usp. 36, 653 (1993)

    Article  ADS  Google Scholar 

  48. Gisin, N., Bechmann-Pasquinucci, H.: Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 246, 1 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Scarani, V., Acín, A., Schenck, E., Aspelmeyer, M.: Nonlocality of cluster states of qubits. Phys. Rev. A 71, 042325 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  51. Wen, J., Qiu, D.: Entanglement in adiabatic quantum searching algorithms. Int. J. Quantum Inf. 6, 997 (2008)

    Article  MATH  Google Scholar 

  52. Lanting, T., et al.: Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041 (2014)

    Google Scholar 

  53. Albash, T., Vinci, W., Mishra, A., Warburton, P.A., Lidar, D.A.: Consistency tests of classical and quantum models for a quantum annealer. Phys. Rev. A 91, 042314 (2015)

    Article  ADS  Google Scholar 

  54. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  55. Suzuki, S., Das, A. (eds.): Quantum annealing: the fastest route to quantum computation? Eur. Phys. J. Spec. Top. 224, 1 (2015)

  56. Love, P., et al.: A characterization of global entanglement. Quantum Inf. Process. 6, 187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Terhal, B.M.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Gühne, O., Toth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  59. Spedalieri, F.M.: Detecting entanglement with partial state information. Phys. Rev. A 86, 062311 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

J. Batle acknowledges fruitful discussions with J. Rosselló, Maria del Mar Batle and Regina Batle. R. O. acknowledges support from High Impact Research MoE Grant UM.C/625/1/HIR/MoE/CHAN/04 from the Ministry of Education Malaysia. Also, J. Batle is grateful to the anonymous referees who provided a great insight into the correction of the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Batle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batle, J., Ooi, C.H.R., Farouk, A. et al. Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?. Quantum Inf Process 15, 3081–3099 (2016). https://doi.org/10.1007/s11128-016-1324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1324-x

Keywords

Navigation